Abstract:
A compound containing at least two pyridinium derivatives in its molecular structure and being in a reduced form thereof may be used as a CNT n-doping material. The compound may donate electrons spontaneously to CNTs to n-dope the CNTs, while being oxidized into its stable state. An n-doped CNT that is doped with the CNT n-doping material may maintain a stable n-doped state for a long time without being dedoped even in the air and/or water. Further, the n-doped state may be easily controlled when using the CNT n-doping material.
Abstract:
Disclosed is a transparent carbon nanotube (CNT) electrode using a conductive dispersant. The transparent CNT electrode comprises a transparent substrate and a CNT thin film formed on a surface the transparent substrate wherein the CNT thin film is formed of a CNT composition comprising CNTs and a doped dispersant. Further disclosed is a method for producing the transparent CNT electrode.The transparent CNT electrode exhibits excellent conductive properties, can be produced in an economical and simple manner by a room temperature wet process, and can be applied to flexible displays. The transparent CNT electrode can be used to fabricate a variety of devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays and touch screen panels, that are required to have both light transmission properties and conductive properties.
Abstract:
A carbonization catalyst for forming graphene may be exfoliated from a graphene sheet by etching. A binder layer may be formed on the graphene sheet on which a carbonization catalyst is formed, to support and fix all or part of the graphene sheet. Further, the graphene sheet from which the carbonization catalyst is exfoliated may be transferred to a device. When exfoliating the carbonization catalyst from the graphene sheet, an acid may be used together with a wetting agent.
Abstract:
Disclosed are a heat transfer medium and a heat transfer method that uses the heat transfer medium. The heat transfer medium comprises a light-transparent substrate coated with a plurality of nano particles. The nano particles absorb light incident thereon to thereby produce heat, which is transferred to a target object to be heated. Nano particles can be applied onto a target object. After heating, the particles are removed by etching. Nano particles can be selectively applied to the light-transparent substrate or directly to a target object to be heat so as to localize heat-production and thus heat selective portions of the target object.
Abstract:
Provided is a substrate for forming a pattern comprising an inorganic layer having a modified surface, wherein the modified surface is formed by coating a surface of the inorganic layer with a bifunctional molecule comprising a functional group having an affinity for a nanocrystal at one end of the molecule and a functional group having an affinity for the inorganic layer at the other end of the molecule. A method for forming a pattern of nanocrystals is also provided.
Abstract:
An economical method of preparing a large-sized graphene sheet having a desired thickness includes forming a film, the film comprising a graphitizing catalyst; heat-treating a gaseous carbon source in the presence of the graphitizing catalyst to form graphene; and cooling the graphene to form a graphene sheet. A graphene sheet prepared according to the disclosed method is also described.
Abstract:
A composition including graphene; and a dopant selected from the group consisting of an organic dopant, an inorganic dopant, and a combination including at least one of the foregoing.
Abstract:
A transistor includes at least three terminals comprising a gate electrode, a source electrode and a drain electrode, an insulating layer disposed on a substrate, and a semiconductor layer disposed on the substrate, wherein a current which flows between the source electrode and the drain electrode is controlled by application of a voltage to the gate electrode, where the semiconductor layer includes a graphene layer and at least one of a metal atomic layer and a metal ion layer, and where the metal atomic layer or the metal ion layer is interposed between the graphene layer and the insulating layer.
Abstract:
A carbon nanotube (CNT) film having a transformed substrate structure and a manufacturing method thereof. The CNT film includes a transparent substrate, a plurality of three-dimensional (3D) structures formed distant from each other on the transparent substrate, and carbon nanotubes (CNTs) deposited on the transparent substrate where the plurality of 3D structures is not formed. The method includes forming a plurality of 3D structures distant from each other on a transparent substrate, and depositing a CNT solution on the substrate with the plurality of 3D structures formed thereon, wherein the CNT solution is deposited into a portion of the transparent substrate where the 3D structures are not formed. Thus, the deposition mechanism of the CNT solution is controlled to thereby increase the transparency of the CNT film and the electrical conductivity of an electrode including the CNT film.
Abstract:
Disclosed are a carbon nano-tube (CNT) light emitting device and a method of manufacturing the same. Specifically, the CNT light emitting device comprises: a CNT thin film formed using a CNT dispersed solution; a n-doping polymer formed on one end of the CNT thin film; a p-doping polymer formed on the other end of the CNT thin film; and a light emitting part between the n-doping polymer and the p-doping polymer. In addition, the method of manufacturing a CNT light emitting device comprises steps of: mixing CNTs with a dispersing agent or dispersing solvent to prepare a CNT dispersed solution; forming a CNT thin film using the CNT dispersed solution; coating a n-doping polymer on one end of the CNT thin film; and coating a p-doping polymer on the other end of the CNT thin film. According to the invention, the n-doping polymer and the p-doping polymer are respectively coated on the CNT having a CNT random network structure to implement a p-n junction, thereby implementing a light emitting device in a simple and low-priced process.