摘要:
Devices, compositions, and methods are described which provide a tubular nanostructure or a composite tubular nanostructure targeted to a lipid bilayer membrane. The tubular nanostructure includes a hydrophobic surface region flanked by two hydrophilic surface regions. The tubular nanostructure is configured to interact with a lipid bilayer membrane and form a pore in the lipid bilayer membrane. The tubular nanostructure may be targeted by including at least one ligand configured to bind to one or more cognates on the lipid bilayer membrane of a target cell.
摘要:
Nanoparticles having a core and a corona of ligands covalently linked to the core, wherein differing species of peptides are bound to the nanoparticles and incorporated into various dosage forms.
摘要:
The present invention provides a method for producing chitin nanofibers, which includes the steps of deproteinizing a material derived from a chitin-containing organism by an alkali treatment, deashing a deproteinized integument by an acid treatment, optionally treating the deashed integument under acidic conditions, and then subjecting to a fiber-loosening treatment. The present invention also provides chitin nanofibers obtained by the method, and a composite material and a coating composition each containing the same. The present invention provides a method for producing chitosan nanofibers, which includes, in addition to the above steps, a deacetylation step and chitosan nanofibers obtained by the method, and a composite material and a coating composition each containing the same.
摘要:
A porous scaffold is disclosed, the porous scaffold comprising electrospun polymeric nanofibers, wherein an average diameter of a pore of the porous scaffold is about 300 μm is disclosed. An average diameter of the polymeric nanofibers ranges from about 100 to 400 nm. The scaffold may comprise a plurality of particles, the particles being greater than about 1 μm in diameter. Methods of fabricating scaffolds, methods for generating tissue and methods of using scaffolds for tissue reconstruction are also disclosed.
摘要:
Disclosed are water-soluble nanoparticles. The water-soluble nanoparticles are each surrounded by a multifunctional group ligand including an adhesive region, a cross linking region, and a reactive region. In the water-soluble nanoparticles, the cross-linking region of the multifunctional group ligand is cross-linked with another cross-linking region of a neighboring multifunctional group ligand. Furthermore, the present invention provides a method of producing water-soluble nanoparticles, which includes (1) synthesizing water-insoluble nanoparticles in an organic solvent, (2) dissolving the water insoluble nanoparticles in a first solvent and dissolving water-soluble multifunctional group ligands in a second solvent, (3) mixing the two solutions from the step (2) to substitute surfaces of the water-insoluble nanoparticles with the multifunctional group ligands and dissolving a mixture in an aqueous solution to conduct a separation process, and (4) cross-linking the substituted multifunctional group ligands with each other.
摘要:
The present invention is directed to peptide amphiphile compounds, compositions and methods of use, wherein nanofiber bundling or epitope aggregation is inhibited. In certain embodiments, the peptide amphiphiles of the present invention have increased solubility and reduced nanofiber bundling. The molecules may be used in pharmaceutical applications, for example for in vivo administration to human patients, by increasing biological activity of the compositions toward neurite outgrowth and nerve regeneration.
摘要:
A compound containing at least two pyridinium derivatives in its molecular structure and being in a reduced form thereof may be used as a CNT n-doping material. The compound may donate electrons spontaneously to CNTs to n-dope the CNTs, while being oxidized into its stable state. An n-doped CNT that is doped with the CNT n-doping material may maintain a stable n-doped state for a long time without being dedoped even in the air and/or water. Further, the n-doped state may be easily controlled when using the CNT n-doping material.
摘要:
The invention relates to an optical system for determining the distribution, environment, or activity of fluorescently labeled reporter molecules in cells for the purpose of screening large numbers of compounds for specific biological activity. The invention involves providing cells containing fluorescent reporter molecules in an array of locations and scanning numerous cells in each location with a fluorescent microscope, converting the optical information into digital data, and utilizing the digital data to determine the distribution, environment or activity of the fluorescently labeled reporter molecules in the cells. The array of locations may be an industry standard 96 well or 384 well microtiter plate or a microplate which is a microplate having a cells in a micropatterned array of locations. The invention includes apparatus and computerized method for processing, displaying and storing the data.
摘要:
This invention involves the nano-structured support used for separation or/and analysis, especially the chip substrate, ELISA plate substrate, planar chromatography strip and chromatography gel. Besides, it involves the functionalized nano-structured support of high sensibility for separation or/and analysis, especially the analysis-chip, ELISA plate, planar chromatography reagent strip and chromatography gel. In addition, this invention also involves the nano-structured marking system for analysis. Moreover, it concerns the test kit; especially the chip kit, ELISA kit, and planar chromatography kit. What's more, this invention involves the preparing methods and the applications of all those mentioned above, especially the chip analysis, analyses with ELISA plate, planar chromatography strip and chromatography separation.
摘要:
Disclosed are water-soluble nanoparticles. The water-soluble nanoparticles are each surrounded by a multifunctional group ligand including an adhesive region, a cross linking region, and a reactive region. In the water-soluble nanoparticles, the cross-linking region of the multifunctional group ligand is cross-linked with another cross-linking region of a neighboring multifunctional group ligand. Furthermore, the present invention provides a method of producing water-soluble nanoparticles, which includes (1) synthesizing water-insoluble nanoparticles in an organic solvent, (2) dissolving the water insoluble nanoparticles in a first solvent and dissolving water-soluble multifunctional group ligands in a second solvent, (3) mixing the two solutions from the step (2) to substitute surfaces of the water-insoluble nanoparticles with the multifunctional group ligands and dissolving a mixture in an aqueous solution to conduct a separation process, and (4) cross-linking the substituted multifunctional group ligands with each other.