Abstract:
An electronic thermometer includes a temperature sensing means for sensing a temperature of a part to be measured, a prediction means fro predicting an equilibrium temperature by using the temperature being sensed, and a temperature display means having a temperature display unit. The temperature display means switches the display of the temperature display unit from the predicted temperature predicted by the prediction means to the actual measured temperature sensed by the temperature sensing means, based on a variation state of a peak of the temperature sensed by the temperature sensing means. Accordingly, a variation in displayed temperature is reduced, when the display switching is performed from the predicted temperature to the actual measured temperature, and a determination of the display switching from the predicted temperature to the actual measured temperature can be achieved by a simple circuit.
Abstract:
A temperature measuring element (2a) for detecting a temperature, a display panel (9) for displaying the temperature measured by the temperature measuring element (2a), an operation switch (11) for predetermined operation, and a vibration generator (12) for notifying that an electronic clinical thermometer is in a predetermined state are arranged in the order named in the longitudinal direction of the electronic clinical thermometer. The display panel, the vibration generator, and a circuit board are held in one inside frame (13), and are fitted together with the inside frame (13) into a sheath case (1) and assembled.
Abstract:
A heat collecting member of a thermometer, such as a clinical thermometer, is formed of a titanium-based material or a metallic base material of which the surface is coated with the titanium-based material.
Abstract:
A semiconductor device, a testing method and a refresh control method having a temperature detecting function to detect a predetermined temperature with little dispersion and to optimize the acting state in accordance with the predetermined temperature detected. The semiconductor device includes at least a memory cell, a refresh control circuit for switching the refresh period tREF of the memory cell, and a temperature detecting unit to be biased with a bias voltage VB+ coming from a voltage bias unit including a reference unit and a regulator unit.
Abstract:
A starting circuit for an integrated circuit (IC) device insures that the IC device is properly initialized before an initialization signal is dropped. The starting circuit, which receives power from high and low potential power supplies, includes a first transistor having a threshold voltage within a known range. The first transistor receives a control voltage generated from the high and low potential power supplies and produces a start (initialization) signal, from the time that the high potential power supply voltage begins to rise to when the control voltage rises to the first transistor threshold voltage. A correction circuit connected to the first transistor adjusts the control voltage in accordance with the threshold voltage of the first transistor.
Abstract:
An internal power supply auxiliary circuit supplies a current to a power generator circuit. A pulse signal generator receives an input signal and outputs a first control signal. A driver circuit connected to the pulse signal generator receives the first control signal, an external supply voltage and a source voltage, and generates a drive pulse signal. A current supply driver circuit receives the drive pulse signal and the external supply voltage and outputs the supply current to the power generator circuit. A gate voltage regulator circuit connected to the driver circuit receives a reference voltage and produces the source voltage. The gate voltage regulator causes the source voltage to substantially match the reference voltage so that the current supplied to the power generator circuit does not exceed a predetermined value.
Abstract:
A two stage charge pump circuit can perform either a two stage boosting operation or a single stage boosting operation. The charge pump circuit includes first, second and third gate transistors connected in series between first and second supply voltages, and a bypass transistor. A first booster stage includes a capacitor connected between the first and second gate transistors and a drive circuit. A second booster stage includes a capacitor connected between second and third gate transistors and the drive circuit. The third gate transistor is connected to an internal bus which provides an output voltage to other circuit elements connected to it. The bypass transistor is connected between the first booster stage and the internal bus.
Abstract:
A multilayer insulated wire has a conductor and solderable extrusion-insulating layer made up of two or more layers for covering the conductor. At least one insulating layer including the outermost layer is formed by a mixture of 100 parts by weight of resin components in which 100 parts by weight of a thermoplastic polyester-series resin (A) is blended with 5 to 40 parts by weight of an ethylene-series copolymer having a carboxylic acid component or a metal salt of the carboxylic acid component in its side chain, and 10 to 80 parts by weight of an inorganic filler (B). A transformer which utilizes the multilayer insulated wire has excellent solderability, high-frequency characteristics, peel resistance under high-voltage and high-frequency, and coilability, and it is favorably suitable for industrial production. A transformer utilizing the multilayer insulated wire has excellent electrical properties and high reliability, because when used at high frequencies, there arises no problem of lowering of electric properties and scraping-off from the wire by corona.
Abstract:
A data transfer circuit device including a data transfer circuit, a latch control circuit and a data latch circuit. The data transfer circuit outputs data therefrom in response to an externally supplied transfer signal. The latch control circuit generates a data latch signal, based on the transfer signal and a latch control signal. The data latch circuit latches the data supplied from the data transfer circuit, based on the data latch signal, and outputs the latched data as output data. When the data is being switched, the latch control circuit prevents the data latch signal from being supplied to the data latch circuit.
Abstract:
A output buffer circuit incorporates an output controller and voltage controller between a first and a second voltage potential to buffer the output of data produced by a semiconductor device. The output controller provides switching control signals to transistors in the voltage controller in order to prevent the first potential from being effected by the potential at the output of the output buffer.