摘要:
Disclosed is a separator. The separator includes a planar non-woven fabric substrate having a plurality of pores, and a porous coating layer formed on at least one surface of the non-woven fabric substrate. The porous coating layer is composed of a mixture of filler particles and a binder polymer. The filler particles include conductive positive temperature coefficient (PTC) particles composed of a mixture of conductive particles and a low melting point resin having a melting point lower than that of the non-woven fabric substrate. Due to the presence of the conductive PTC particles, the porous coating layer can be imparted with a shutdown function against thermal runaway. In addition, the porous coating layer exhibits appropriate electrical conductivity. Therefore, the separator is suitable for use in a high-capacity electrochemical device.
摘要:
Provided is an electrochemical device comprising multi-stacked unit cells of full cells or bicells and a separation film disposed therebetween, whereby the separation film and separators are alternately stacked between electrode layers with an opposite polarity. Herein, as the separation film is formed of a material having a higher thermal shrinkage rate than that of the separator, the thermal stability of the device can be secured by stable induction of shutdown via thermal behavior of the separation film, without causing short-circuiting due to thermal shrinkage of the separator even when a temperature of a battery suddenly rises by internal or external factors.
摘要:
Provided are an electrode active material having a plurality of pores and a secondary battery including the same, and more particularly, a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a Brunauer, Emmett, and Teller (BET) specific surface area ranging from 2 m2/g to 100 m2/g, and a secondary battery including a cathode including a cathode active material, a separator, an anode including an anode active material, and an electrolyte, in which the anode active material includes a porous electrode active material including silicon-based oxide expressed by SiOx (0.5≦x≦1.2) and having a BET specific surface area ranging from 2 m2/g to 100 m2/g.
摘要:
Disclosed is an anode active material including: a crystalline phase comprising Si and a Si-metal alloy; and an amorphous phase comprising Si and a Si-metal alloy, wherein the metal of the Si-metal alloy of the crystalline phase is the same as or different from the metal of the Si-metal alloy of the amorphous phase.
摘要:
Disclosed are a separator for a battery, which comprises a gel polymer layer formed on a substrate, the gel polymer layer including a plurality of three-dimensional open pores interconnected with each other, and an electrochemical device comprising the same separator. Also, disclosed is a method for preparing the gel polymer layer including a plurality of three-dimensional open pores interconnected with each other on a substrate.
摘要:
Disclosed is an anode for a lithium secondary battery. The anode includes a current collector in the form of a wire and a porous anode active material layer coated to surround the surface of the current collector. The three-dimensional porous structure of the active material layer increases the surface area of the anode. Accordingly, the mobility of lithium ions through the anode is improved, achieving superior battery performance. In addition, the porous structure allows the anode to relieve internal stress and pressure, such as swelling, occurring during charge and discharge of a battery, ensuring high stability of the battery while preventing deformation of the battery. These advantages make the anode suitable for use in a cable-type secondary battery. Further disclosed is a lithium secondary battery including the anode.
摘要:
Disclosed is an electrolyte for an electrochemical device. The electrolyte includes a composite of a plastic crystal matrix electrolyte doped with an ionic salt and a crosslinked polymer structure. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the crosslinked polymer structure. Further disclosed is a method for preparing the electrolyte. The method does not essentially require the use of a solvent. Therefore, the electrolyte can be prepared in a simple manner by the method. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength.
摘要:
Disclosed is a separator. The separator includes a planar non-woven fabric substrate having a plurality of pores, and a porous coating layer formed on at least one surface of the non-woven fabric substrate. The porous coating layer is composed of a mixture of filler particles and a binder polymer. The filler particles include conductive positive temperature coefficient (PTC) particles composed of a mixture of conductive particles and a low melting point resin having a melting point lower than that of the non-woven fabric substrate. Due to the presence of the conductive PTC particles, the porous coating layer can be imparted with a shutdown function against thermal runaway. In addition, the porous coating layer exhibits appropriate electrical conductivity. Therefore, the separator is suitable for use in a high-capacity electrochemical device.
摘要:
Provided is a cable-type secondary battery including an inner electrode comprising at least two anodes arranged in parallel that extend longitudinally and have a horizontal cross section of a predetermined shape, an electrolyte layer serving as an ion channel surrounding the inner electrode, an outer electrode comprising a tubular cathode having a horizontal cross section of a predetermined shape and surrounding the electrolyte layer, and a protection coating surrounding the outer electrode. The cable-type secondary battery has free shape adaptation due to its linearity and flexibility. A plurality of inner electrodes within a tubular outer electrode leads to an increased contact area therebetween and consequently a high battery rate. It is easy to control the capacity balance between the inner and outer electrodes by adjusting the number of inner electrodes.