Abstract:
A magnetoresistive sensor comprising first and second magnetoresistive elements is disclosed. Each magnetoresistive element is coupled at a respective first end to a common ground terminal and comprises one or more magnetoresistive segments, each overlying a corresponding segment of an excitation coil. The resistance of the magnetoresistive segments in each of the first and second magnetoresistive elements is the same and the resistance of the segments of the excitation coil corresponding to the first magnetoresistive element is the same as the resistance of the segments of the excitation coil corresponding to the second magnetoresistive element.
Abstract:
In an example embodiment, a system detects the degree of rotation of a knob, the system comprises a shaft having a length and a first end and a second end; the second end has an oblique reflective surface defined thereon; the first end fixedly attached to the knob. Containing the shaft is a rotation body, having a receptacle to accommodate the second end of the shaft with the oblique reflective surface exposed. An integrated circuit optical module is optically coupled the rotation body and the optical module detects light irradiance profile from the oblique reflective surface. The optical module includes a solid state light source and a plurality of photo detectors which generate an electrical signal upon exposure to light. As the knob is rotated, the oblique reflective surface generates a changing asymmetric irradiance profile, the change being translated into an electrical signal via the photo detectors. The electrical signal corresponds to the degree of rotation of the knob.
Abstract:
The optical pointing device of the present invention comprises a base and an actuator movable connected to the base, wherein the actuator comprises a reflective portion on a side facing the base, and wherein the base comprises a light source for emitting light towards the reflective portion of the actuator, a detector comprising one of more detection units for detecting at least a part of the light reflected by the reflective portion of the actuator, and a transparent element arranged between the actuator and at least one of the light source and the detection units, for providing a closed transparent housing for the light source and/or the detection units.
Abstract:
A MEMS resonator, comprising a planar resonator body formed of two different materials with opposite sign temperature coefficient of Young's modulus. A first portion of one material extends across the full thickness of the resonator body. This provides a design which allows reduced temperature drift.
Abstract:
A sensor for contactlessly detecting currents, has a sensor element having a magnetic tunnel junction (MTJ), and detection circuitry, the sensor element having a resistance which varies with the magnetic field, and the detection circuitry is arranged to detect a tunnel current flowing through the tunnel junction. The sensor element may share an MTJ stack with memory elements. Also it can provide easy integration with next generation CMOS processes, including MRAM technology, be more compact, and use less power. Solutions for increasing sensitivity of the sensor, such as providing a flux concentrator, and for generating higher magnetic fields with a same current, such as forming L-shaped conductor elements, are given. The greater sensitivity enables less post processing to be used, to save power for applications such as mobile devices. Applications include current sensors, built-in current sensors, and IDDQ and IDDT testing, even for next generation CMOS processes.
Abstract:
Detection circuits (1) for detecting movements of movable objects (2) such as joysticks are provided with detectors (100,200) for detecting movements of the movable objects (2), comprising detection units (101-136,201-204) for detecting light spots (3) from sources (4), the light spots (3) depending on said movements, and with reference detectors (300) for compensating for aging/process variations, comprising reference detection units (301-304) for calibrating the detection units (101-136,201-204). Such detection circuits (1) suffer from aging/process variations to a relatively small extent. First detectors (100) for detecting x or y movements are partly located within the light spot (3) dependently on positions of (300) are then entirely located within the light spot (3) independently from positions of the joysticks. Second detectors (200) for detecting z movements are entirely located within the light spot (3) independently from positions of the joysticks and the reference detectors (300) are then entirely located outside the light spot (3) independently from positions of the joysticks.
Abstract:
An integrated circuit arrangement having at least one electrical conductor which, when a current flows through it, produces a magnetic field which acts on at least a further part of the circuit arrangement. The electrical conductor has a first side oriented towards the at least further part of the circuit arrangement and comprises a main line of conductive material, and, connected to its first side, at least one field shaping strip made of magnetic material. Due to the field shaping strip, the inhomogeneity of the magnetic field profile above the electrical conductor is reduced.
Abstract:
The present invention provides an integrated circuit arrangement having at least one electrical conductor (40) which, when a current flows through it, produces a magnetic field which acts on at least a further part of the circuit arrangement. The electrical conductor (40) has a first side oriented towards the at least further part of the circuit arrangement and comprises a main line (41) of conductive material, and, connected to its first side, at least one field shaping strip (42) made of magnetic material. Due to the field shaping strip (42), the inhomogeneity of the magnetic field profile above the electrical conductor (40) is reduced.
Abstract:
A sensor for contactlessly detecting currents, has a sensor element having a magnetic tunnel junction (MTJ), and detection circuitry, the sensor element having a resistance which varies with the magnetic field, and the detection circuitry is arranged to detect a tunnel current flowing through the tunnel junction. The sensor element may share an MTJ stack with memory elements. Also it can provide easy integration with next generation CMOS processes, including MRAM technology, be more compact, and use less power. Solutions for increasing sensitivity of the sensor, such as providing a flux concentrator, and for generating higher magnetic fields with a same current, such as forming L-shaped conductor elements, are given. The greater sensitivity enables less post processing to be used, to save power for applications such as mobile devices. Applications include current sensors, built-in current sensors, and IDDQ and IDDT testing, even for next generation CMOS processes.
Abstract:
A method of reducing stress and wear on one or more components in a keel joint assembly in which a cobalt-based, wear resistant alloy coating is applied to the surfaces of one or more components. The use of the coating reduces stress and wear and achieves improved corrosion, galling, erosion and abrasion resistance as compared to other currently known and applied methods. In the present invention, the coating would preferably would be applied to the surfaces of the mating components of the keel joint.