Abstract:
Provided are a local area network (LAN) emulation method and an information storage medium. The LAN emulation method provides a LAN emulation function in an arrayed-waveguide grating (AWG)-based wavelength division multiplexing (WDM)-passive optical network (PON) using a mode bit and a logical link identifier (LLID).
Abstract:
Provided is an optical network in which a wavelength division multiplexing-based optical transmission scheme is implemented. An apparatus for cross-connecting an optical path includes a path switch including a plurality of input terminals receiving optical signals from other nodes, and a plurality of output terminals sending the optical signals to the other nodes, the path switch switching the path of the optical signal so that the optical signal input via one of the input terminals is output to one of the output terminals; and a wavelength converter converting a wavelength of the optical signal input via the input terminal and outputting the wavelength-converted optical signal to the output terminal according to a switching result of the path switch. Thus, inefficient use of a network resource due to wavelength collision can be prevented, the path can be automatically cross-connected and thus quickly established, path switching and branch combination can be performed irrespective of wavelength, and switching can be performed irrespective of direction.
Abstract:
Disclosed herein is an apparatus for controlling a decision threshold voltage to an optical receiver, which is capable of automatically controlling the decision threshold voltage to the optical receiver appropriately to signal level decision on the basis of a low-frequency band signal component of an output signal from the optical receiver. The apparatus is adapted to control the level of the decision threshold voltage to the optical receiver, which converts an input optical signal into an electrical signal. To this end, the apparatus comprises a voltage detector for branching off part of the output signal from the optical receiver and detecting a corresponding voltage, a differential comparator for comparing the voltage detected by the voltage detector with a reference voltage inputted thereto and outputting the resulting differential voltage, a low pass filter for filtering the differential voltage from the differential comparator at a predetermined low frequency band and supplying the resulting voltage as the threshold voltage to the optical receiver, and a voltage controller for controlling the reference voltage to the differential comparator on the basis of a differential voltage between the threshold voltage from the low pass filter and a predetermined voltage corresponding to a predetermined minimum bit error rate.
Abstract:
The present invention relates to an apparatus and method for stabilizing a bias voltage for a pulse generating modulator, which can automatically detect an optimal bias voltage for an external modulator, which is used in RZ or CSRZ modulation of an optical transmission signal using NRZ data to generate a reference pulse optical signal, and maintain the optimal bias voltage. In the bias voltage stabilizing method of the present invention, an output signal of the external modulator, to which the bias voltage to be stabilized is applied, is detected, a drive clock signal applied to the external modulator is detected, a mean output value of the products obtained by the multiplication of the output signal and the clock signal is periodically examined, and the bias voltage is adjusted so that the mean output value becomes “0”.
Abstract:
Provided is an erbium-doped fiber amplifier reducing transient phenomena of a signal-to-noise ratio and a bit error rate in a dynamic wavelength division multiplexing system and an amplifying method using the erbium-doped fiber amplifier. The erbium-doped fiber amplifier includes: a polarization scrambler modulating a polarization state of an input signal to remove a polarization of the input signal; an amplifier amplifying the input signal from which the polarization has been removed; a detector reading powers of input and output signals of the amplifier; and an automatic gain controller controlling currents of the pump LDs according to the powers of the input and output signals read by the detector 1630 to maintain the gain even if the power of input signal changes.
Abstract:
Disclosed is a multiwavelength locking method and apparatus using an acousto-optic tunable filter in an optical communication system including optical transport networks, in which output wavelengths of light sources are monitored under the condition in which pilot signals are applied to the acousto-optic tunable filter, so as to lock the wavelengths of the light sources, thereby eliminating an wavelength instability of the light sources for an improvement in transmission characteristics. The acousto-optic tunable filter receives light beams of N different frequencies respectively outputted from N light sources, along with N pilot signals having different frequencies, and converts respective frequencies of beam components of the output beam corresponding to the N pilot signals, thereby outputting N frequency-converted output beams to be applied to a photo-detector. N electrical signals respectively corresponding to the frequencies of the pilot signals are outputted from the photo-detector, separated from one another while corresponding to the light sources, respectively, and then used to compensate for respective output wavelengths of the light sources, thereby enabling the corresponding light sources to output locked wavelengths, respectively.
Abstract:
The present invention discloses a method for controlling a micro electro-mechanical system manufactured using micro-machining technology and verifying the state thereof and, more particularly, to a method for controlling the micro electro-mechanical system and verifying the state thereof using light so that the voltage applied to each MEMS is determined by the intensity of the light incident on two optical windows of the symmetric SEEDs respectively by attaching the symmetric SEEDs every MEMS to electrically connect one of the SEEDs to the MEMS in parallel, instead of a conventional method in which the voltage from the control circuit is applied directly to the MEMS via wires.
Abstract:
An apparatus for receiving optical signals in DQPSK and method of controlling a phase offset in receiving optical signals for DQPSK is provided. An original optical signal modulated in DQPSK is received. The original optical signal is delayed by one bit to make a delay optical signal such that an interference on the original optical signal and the delay optical signal is performed. A control signal is generated by use of an interference result between the original optical signal and the delay optical signal. A phase offset for the interference between the original optical signal and the delay optical signal is controlled by use of the generated control signal. In receiving optical signals, the phase offset between the delay optical signal and the original optical signal is precisely controlled, thereby optimizing the transfer characteristics of an optical delay interferometer.
Abstract:
An Ethernet device having multiple lanes and a method of operating the lanes are provided. In one general aspect, it is possible to allocate a dummy block to each of one or more lanes such that the lanes do not selectively participate in communications. In addition, on a receiving side, the dummy block can be removed from among the genuine data blocks to enable data to be decoded. In this case, an Ethernet device on a transmission side and an Ethernet device on a receiving side can exchange information of a lane to which the dummy block is allocated by use of a lane status message, and the lane status message may be based on a link fault message specified by Ethernet standards.
Abstract:
Provided is a digital signal synchronization device of a coherent optical receiver. The digital signal synchronization device includes a digital signal processing unit to perform synchronization on a digital signal of an output optical signal generated by interfering an optical signal received through an optical fiber with an optical signal of laser output from a local oscillator and to perform decoding using the synchronized digital signal, and a digital signal managing unit to monitor the digital signal processing unit to output data of the optical signal normally, which has been received through the optical fiber, according to the synchronized digital signal.