Abstract:
A method of maintaining a fluid flow rate in a heating, ventilating, air conditioning, and refrigeration (HVAC-R) system while maintaining superheat in the HVAC-R system at a desired level includes: continuously measuring an operating fluid temperature of the HVAC-R system and calculating superheat at a pre-determined rate, determining if the calculated superheat is stable, measuring and recording an operating fluid pressure of the system each time the calculated superheat is stable, recording an average operating fluid pressure each subsequent time the superheat is stable, calculating an output PWM and reducing fluid flow through a metering valve when an actual PWM is greater than the calculated output PWM by adjusting a PWM signal to a microvalve in the metering valve, and increasing fluid flow through the metering valve when the actual PWM is less than the calculated output PWM by adjusting the PWM signal to the microvalve.
Abstract:
A method of attaching a MEMS die to a surface includes centering and rotationally aligning a solder perform on a solder surface of a body, centering and rotationally aligning a MEMS die on the solder preform, and heating the solder perform in a reflow process until the solder is molten and surface tension of the molten solder moves the MEMS die to a position where the surface tensions balance, and the MEMS die is centered on, and rotationally aligned with, the solder surface of the body.
Abstract:
A two-stage proportional control valve configured for use in a fluid system includes a valve body having a longitudinally extending valve body bore formed therethrough. A first stage microvalve is mounted within the valve body bore, and a second stage spool assembly is mounted within the valve body bore downstream of the microvalve. The second stage spool assembly includes a sleeve and a spool slidably mounted within the sleeve.
Abstract:
A method of attaching a MEMS die to a base includes selecting an attachment material (x), determining a maximum acceptable change in pressure due to mounting stress (dPtarget) transmitted to a MEMS die, determining a worst-case pressure difference transfer function of the attachment material (x) over a thickness (h) variation of the attachment material (x) using the equation: dPmaxx=h*Bx+Cx, wherein B=pressure variation/thickness (h), and C=pressure variation, substituting dPtarget for dPmaxx in the pressure difference transfer function and solving the equation for h, wherein h=(dPtarget−Cx)/Bx, and attaching the MEMS die to a base using the selected attachment material (x) having at least the calculated thickness (h).
Abstract:
A method of attaching a MEMS die to a mounting surface includes coating an inside surface of a pressure port of a fluid inlet member with a layer of solder mask, the fluid inlet member having a first axial end, a second axial end, and a port opening of the pressure port formed in the second axial end of the fluid inlet member. A solder preform is disposed on the mounting surface of the fluid inlet member and a MEMS die is disposed on the solder preform. The solder preform is heated in a re-flow operation to attach the MEMS die to the mounting surface, wherein the solder mask within the pressure port prevents molten solder from entering the pressure port during the re-flow operation.
Abstract:
A multi-layer, stress-isolation platform configured for attaching a MEMS die to a base includes a first platform, a first layer of attachment material between the base and the first platform and attaching the first platform to the base, a MEMS die, and a second layer of attachment material between the first platform and the MEMS die and attaching the MEMS die to the first platform.
Abstract:
A two-stage control microvalve includes a generally cylindrical housing configured for insertion into a bore in a body of a hydro-mechanical valve system, a pilot microvalve mounted within the housing, and a piloted microvalve mounted within the housing and in fluid communication with the pilot microvalve.
Abstract:
A method of calibrating a plurality of superheat controllers includes attaching a plurality of superheat controllers to a manifold assembly, enclosing the manifold assembly within an environmental chamber, and simultaneously calibrating a pressure sensor within each of the plurality of superheat controllers.
Abstract:
A plate is adapted for use in a microvalve and includes a displaceable member configured for movement between a closed position, wherein the displaceable member prevents fluid communication through the microvalve, and an opened position, wherein the displaceable member does not prevent fluid communication through the microvalve. The displaceable member includes an elongated arm portion, a plurality of actuator ribs connected through a central spine to the elongated arm portion, and a hinge portion. The actuator ribs have a first portion and a second portion, the first portion having a first end and a second end, the second end of the first portion connected to the central spine, the second portion having a first end and a second end, the second end of the second portion connected to the central spine. A channel is formed in the plate. A plurality of elongated openings are formed in the plate and define the actuator ribs, each elongated opening having longitudinally extending side edges. One of the elongated openings separates each rib in the second portion of ribs from an adjacent rib or the plate. The channel and a longitudinally extending side edge of one of the elongated openings separate the second portion of the actuator ribs from the plate and define an electrical isolation region.
Abstract:
A microvalve includes a first plate having an inner surface, a recessed region provided within the inner surface, a normally open fluid port and a normally closed fluid port provided within the recessed region. A first sealing structure extends about the normally open fluid port, and a second sealing structure extends about the normally closed fluid port. A second plate defines a non-movable portion and a movable portion. A surface of the non-movable portion abuts the inner surface of the first plate, the non-movable portion having an opening formed therethrough. The movable portion is formed within the opening, has an axis, and defines a displaceable member connected to the non-movable portion by a convoluted spring formed in the opening. The displaceable member is slidingly and axially movable within the opening between a first position, wherein the displaceable member cooperates with the second sealing structure to prevent fluid communication through the normally closed fluid port, and a second position, wherein the displaceable member does not cooperate with at least a portion of the second sealing structure to prevent fluid communication through the normally closed fluid port.