Abstract:
A method of fabricating a poly-Si thin film and a method of fabricating a poly-Si TFT using the same are provided. The poly-Si thin film is formed at a low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD). After the ICP-CVD, excimer laser annealing (ELA) is performed while increasing energy by predetermined steps. A poly-Si active layer and a SiO2 gate insulating layer are deposited at a temperature of about 150° C. using ICP-CVD. The poly-Si has a large grain size of about 3000 Å or more. An interface trap density of the SiO2 can be as high as 1011/cm2. A transistor having good electrical characteristics can be fabricated at a low temperature and thus can be formed on a heat tolerant plastic substrate.
Abstract:
A display device includes a display panel, a first source driver chip and a connection section. The display panel includes a plurality of source lines, each of which is electrically connected to a plurality of pixels. The first source driver chip is electrically connected to a first group including a first of the source lines to output a data signal having a first polarity to the first source line. The connection section electrically connects the first source line to a last source line of the source lines to provide the data signal having the first polarity to the last source line without need for an additional source driver chip to drive the (mk+1)-th source line.
Abstract:
An LCD corrects deviations in pixel kickback voltages caused by delays in gate driving signals. The LCD includes a timing controller generating first and second output enable signals, first and second level shifters respectively generating first and second gate clock pulses and inverted clock pulses, and first and second gate drivers respectively generating first and second gate driving signals. A precharge time of the first gate driving signals is controlled by the pulse width of the first output enable signal and a precharge time of the second gate driving signals is controlled by the pulse width of the second output enable signal.
Abstract:
In a gate driving circuit and a display apparatus having the gate driving circuit, a pull-up transistor of a present stage among plural stages, which are connected one after another to each other and sequentially output a gate signal, pulls up a present gate signal output through an output terminal to a gate-on voltage. A buffer transistor is connected to a control terminal of the pull-up transistor to receive a previous output signal from a previous stage and to turn on the pull-up transistor. The buffer transistor has a chargeability that is about two times or greater than the chargeability of the pull-up transistor. Thus, the size of the pull-up transistor may be reduced, thereby preventing a malfunction of the gate driving circuit when the gate driving circuit is operated under conditions of high temperature or low temperature.