Abstract:
Optimized signaling in relay-enhanced access networks There are provided measures for optimized signaling in relay-enhanced access networks, said measures exemplarily including receipt of at least one signaling message concerning at least one relay node of a relay-enhanced access network over at least one predetermined signaling interface, concentration of signaling concerning a respective relay node in terms of irrelevancy and/or redundancy from the at least one signaling message, and forwarding of the concentrated signaling in a signaling message over the at least one predetermined signaling interface towards the respective relay node. Said measures may exemplarily be applied for optimizing X2 messaging in relay-enhanced LTE access networks.
Abstract:
It is described a method for transferring data in a downlink direction from a transmitting network element to a user equipment. The described method includes (a) sending at least one data packet from the transmitting network element to a source base station, (b) receiving the data packet by the source base station, which is connected to a source relay node representing a source access point for the user equipment, (c) caching the data packet by the source base station, (d) handing over the user equipment from the source relay node to a target access point, and (e) transferring the data packet from the source base station via the target access point to the user equipment. It is further described a corresponding method for transferring data in an uplink direction from a user equipment to a receiving network element, wherein the caching is carried out by a target base station. Furthermore, it is described a source base station and a target base station, which are adapted to carry out respectively one of the above mentioned data transferring methods.
Abstract:
User equipments UEs send their buffer status reports and data to a relay node RN. The RN stores the data in actual buffers per radio bearer group RBG, and stores the UEs buffer occupancies in virtual buffers per RBG. The RN then sends its own status report to the controlling eNBr with the actual buffer occupancy and information about the virtual buffer occupancy. This enables the eNBr to know in advance the volume of data incoming to the RN's actual buffers, as well as the current occupancy of those buffers, so as to better allocate radio resources. Further, the RN can take soundings of the uplink channels between UEs and the RN, which are then aggregated across the RBRs and sent to the eNBr as a special UL CQI report. The eNBr is thereby enabled to anticipate how soon the data in the UE buffers will appear in the RN's actual buffers (from the additional information of average UL CQI info and virtual buffer status), and thus better allocate the RBRs to be used for the different RBGs in the RN-eNB link as well as the optimal set of RBRs to the UE-RN link, which the RN can redistribute among the UEs that it is serving.
Abstract:
A mobility state of a mobile relay node is determined as one of three or more different mobility states. The mobile relay node may determine the mobility state itself or based on received information from another network node. Control information is determined based on the determined mobility state of the mobile relay node and an action is then performed or initiated based on the determined control information. The tree different mobility states may include moving, standing, and at least one additional mobility state. Example additional mobility states of the mobile radio node include: departing, arriving, or temporarily stopped.
Abstract:
A user equipment, UE, (20) determines a mobility state of a Wi-Fi access point, AP, as one of a moving mobility state and a non-moving mobility state along with control information relating to UE cell (re-)selection and/or handover behavior based on the determined mobility state of the Wi-Fi access point, AP. The UE then controls its cell (re-)selection and/or handover behavior in relation to the Wi-Fi access point, AP based on the determined control information. In a preferred embodiment, the UE can communicate with a cellular base station, BS, and with the Wi-Fi access point, AP. The UE detects the Wi-Fi AP, determines that the Wi-Fi AP is moving based on a moving AP indication, and controls cell (re-Selection and/or handover behavior of the UE based on the determination that the Wi-Fi AP is moving along with other information.
Abstract:
A telecommunications node (28) comprises a communication interface (36) and a parameter controller (40). The node (28) acquires timing advance (TA) information and angle of arrival (AoA) information through the communication interface (36). The timing advance (TA) information and angle of arrival (AoA) information are based on uplink signals received over a radio interface (32) from one or more wireless terminals (30) that are involved or have been involved in handover. The parameter controller (40) uses the timing advance (TA) information and the angle of arrival (AoA) information to make a determination of size and shape of a cell of a radio access network.
Abstract:
A method and a device for data processing in a wireless network are provided, wherein at least one relay node is served by a base station, wherein load partitioning for the at least one relay node is conducted based on at least one load information message, and wherein the at least one load information message includes information regarding resource blocks and sub-frames. Furthermore, a communication system is suggested including at least one such device.
Abstract:
There is proposed a mechanism providing functions of a so-called hybrid home node B (HHNB) where subscribers, depending on their belonging to a specific subscriber group, such as a closed subscriber group or an open subscriber group, are admitted for a connection to the communication network via different connection routes and systems. After a request for connecting a subscriber is received, an identification process is performed whether the subscriber belongs to a first subscriber group (CSG) or to a second subscriber group (OSG). On the basis of this identification, the subscriber is assigned to a first connection route or a second connection route. It is then checked whether available resources on the assigned connection route are sufficient, wherein on the basis of this check the request for connecting is allowed or rejected.
Abstract:
Measures for optimized signaling in relay-enhanced access networks exemplarily include receipt of at least one signaling message concerning at least one relay node of a relay-enhanced access network over at least one predetermined signaling interface, concentration of signaling concerning a respective relay node in terms of irrelevancy and/or redundancy from the at least one signaling message, and forwarding of the concentrated signaling in a signaling message over the at least one predetermined signaling interface towards the respective relay node. These measures may exemplarily be applied for optimizing X2 messaging in relay-enhanced LTE access networks.
Abstract:
An enhanced solution for controlling a handover procedure for handing a terminal device over from a source cell to a target cell in a communication network with relay nodes is provided. In the solution, the relay nodes actively assist in the handover procedure by, for instance, initiating the handover procedure, configuring a relayed link and buffering user data at the relay node.