Abstract:
Engineered stable multi-organism (or multi-cell type) communities encapsulated in a media that slows or prohibits certain metabolic functions such as cell division, but maintains other metabolic functions.
Abstract:
A method of preparing catalytic materials comprising depositing platinum or non-platinum group metals, or alloys thereof on a porous oxide support.
Abstract:
According to various embodiment the present disclosure provides novel and inexpensive methods of forming amorphous silicon and silicon composite materials with specific pre-determined morphologies and oxygen contents. The various forms of amorphous silicon that result from these methods is useful in a wide variety of applications including, but not limited to, solar and lithium-ion batteries.
Abstract:
A family of customizable tethering molecules for tethering cofactors such as, but not necessarily limited to, nicotinamine adenine dinucleotide (NAD+/NADH, NAD(P)+/NAD(P)H) to substrates or structures formed from or including graphene-like materials is described. The tethered cofactor can then be used, for example, as biosensors employed for clinical diagnostic, food industry, medical drug development and environmental and military applications, as well as in reagentless biofuel cells for power generation.
Abstract:
Novel catalytic materials and novel methods of preparing M—N—C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.
Abstract:
A method of preparing catalytic materials comprising depositing platinum or non-platinum group metals, or alloys thereof on a porous oxide support.
Abstract:
Electrooxidative materials and various method for preparing electrooxidative materials formed from an alloy of oxophilic and electrooxidative metals. The alloy may be formed using methods such as spray pyrolysis or mechanosynthesis and may or may not include a supporting material which may or may not be sacrificial as well as the materials.
Abstract:
The present invention is a disposable element for assaying food samples and a method for using the element. The disposable element includes a container having first, second, and third ports, a prefilter disposed in the container, an immuno-sorbent layer having antibodies to a target microbe affixed thereto, the immuno-sorbent layer also being disposed in the container, and an electrode in contact with the immuno-sorbent layer. The prefilter and immuno-sorbent layers are positioned in the container such that a sample introduced into the first port passes through the prefilter and the immuno-sorbent layer when a pressure differential is created between the first and third ports. In addition, liquid entering the second port passes through the immuno-sorbent layer, but not the prefilter, when a pressure differential is created between the second and third ports. The prefilter preferably has a pore size between 10 and 30 microns. The disposable element may be used to measure the level of microbiological contamination in a solid sample caused by a predetermined microbe. The sample is pretreated by mixing the sample with a buffer solution and blending buffer and sample. An aliquot of the blended sample is introduced into the disposable element and is filtered through the prefilter and then passes through the immuno-sorbent layer. A solution having labeled antibodies to the microbe is passed through the immuno-sorbent layer via the second port and the amount of label bound to the immuno-sorbent is measured.