Abstract:
An amplifier circuit for thermoacoustic device includes a peak hold circuit, an add-subtract circuit, and a power amplifier. The peak hold circuit is configured to accept an audio signal and output a peak hold signal. The add-subtract circuit is configured to accept the audio signal and the peak hold signal, and output a modulated signal after a comparison operation of the audio signal and the peak hold signal. The power amplifier is configured to accept the modulated signal, amplify the modulated signal, and output an amplified voltage signal.
Abstract:
A thermoacoustic device includes a sound wave generator, a number of first electrodes and a number of second electrodes. The sound wave generator includes a carbon nanotube structure. The second electrodes and the first electrodes are separately connected to the sound wave generator. The second electrodes and the first electrodes are parallel to each other and are alternately arranged at uniform intervals. A working voltage applied to the first and second electrodes is less than or equal to about 50 volts. The sound wave generator and the first and second electrodes satisfy a formula of 1 Ω ≤ R 1 ( n - 1 ) 2 ≤ 125 Ω . Wherein R1 represents a resistance of the sound wave generator in the direction from the first electrodes to the second electrodes, and n represents a sum of the total number of the first electrodes and the second electrodes.
Abstract:
A transmission electron microscope (TEM) micro-grid includes a pure carbon grid having a plurality of holes defined therein and at least one carbon nanotube film covering the holes. A method for manufacturing a TEM micro-grid includes following steps. A pure carbon grid precursor and at least one carbon nanotube film are first provided. The at least one carbon nanotube film is disposed on a surface of the pure carbon grid precursor. The pure carbon grid precursor and the at least one carbon nanotube film are then cut to form the TEM micro-grid in desired shape.
Abstract:
A friction member for a brake mechanism in a camera shutter is provided. The friction member includes at least two carbon nanotube composite layers stacked on each other, each carbon nanotube composite layer includes a polymer and a carbon nanotube structure including a number of carbon nanotubes substantially oriented along a same direction. An angle defined by the carbon nanotubes oriented along the same direction in adjacent carbon nanotube composite layers ranges from greater than 0 degrees, and less than or equal to 90 degrees. The camera shutter using the friction member is also provided. The camera shutter includes a brake mechanism and a drive mechanism including a blade driving lever having a moving path. The brake mechanism includes two abovementioned friction members and a brake lever clamped between the two friction members. The brake lever is located at a termination of the moving path to brake the blade driving lever.
Abstract:
A carbon nanotube film supporting structure is provided. The carbon nanotube film supporting structure is used for supporting a carbon nanotube film structure. The carbon nanotube film supporting structure includes a body and a number of voids. The body has a surface defining a support region. The voids are defined in the support region. A void ratio of the support region is greater than or equal to 80%. The present disclosure also provides a method for using the carbon nanotube film supporting structure.
Abstract:
A card connector includes an insulative housing, a number of contacts retained in the insulative housing, a metallic shell covering the insulative housing to jointly form a card receiving space, and a locking member pivotally mounted to the insulative housing. The locking member includes a card locking beam outside the card receiving space. The locking member is pivotable to an opening status where a card can be freely inserted into the card receiving space along a back-to-front direction, and the locking member is pivotable to a closed status where the card is restricted by the card locking beam in order to prevent the card from backwardly withdrawing from the card receiving space.
Abstract:
Techniques for end-to-end tracing of database operations in source code for database applications are provided. Source code on the client side is instrumented to measure time spent on selected database operation statements (e.g., queries). The selected database operation statements can be uniquely tagged or identified. Tracing is enabled on the database application on the server side so that a log is produced, where the log includes performance (e.g., time spent) information on database operation statements that are executed. The performance information in the log is correlated to the selected database operation statements so that, among other things, the time spent on the client side and the time spent on the server side can be presented for analysis.
Abstract:
A thermoacoustic device includes a sound wave generator, a signal element and a support element. The sound wave generator includes a carbon nanotube structure. The signal element is configured to transmit a signal. The carbon nanotube structure is configured to receive the signal and generate a sound wave. The support element includes a metal substrate and an insulating layer located on the metal substrate. The insulating layer is sandwiched between the metal substrate and the sound wave generator. The thermoacoustic device further includes two electrodes electrically connected to the carbon nanotube structure.
Abstract:
A method for making a TEM micro-grid is provided. The method includes the following steps. A carrier, a carbon nanotube structure, and a protector are provided. The carrier defines a first through opening. The protector defines a second through opening. The protector, the carbon nanotube structure and the carrier are stacked such that the carbon nanotube structure is located between the carrier and the protector. The second through opening at least partly overlaps with the first through opening. The carrier and the protector are welded with each other.
Abstract:
There is provided an information processing device including: a global map acquiring unit that acquires at least a part of a global map representing positions of objects in a real space where a plurality of users are in activity; a local map generating unit that generates a local map representing positions of nearby objects detectable by a device of one user among the plurality of users; and an updating unit that updates the global map based on position data of objects included in the local map