Abstract:
The present invention provides flexible call processing. For example, a call processor system can receive an inbound call intended for a called party and place an outbound call to the called party. The call processing system can provide the called party with a call transfer option.
Abstract:
A communication tool (100) includes a housing (102) having recesses (110) and a set of axial locating elements (112) radially extendable through the recesses (110) and engagably positionable within a profile of a tubing retrievable safety valve (50). An anti rotation device (140) is radially outwardly extendable relative to the housing (112). The anti rotation device (140) operably engages the tubing retrievable safety valve (50) to substantially prevent relative rotation between at least a portion of the communication tool (100) and the tubing retrievable safety valve (50). A cutting tool (148) is radially outwardly extendable relative to the housing (102). The cutting tool (148) is operable to create a fluid passageway (150) between a non annular hydraulic chamber (60) and an interior the tubing retrievable safety valve (50).
Abstract:
The methods of the present invention enable wireless gateway nodes to support mobile node services, such as content based billing, when a data treatment server is present in the system. Using one of a defined Content Flow Label (CFL), an Application Program Interface (API), and a compression protocol header, the present invention provides content based billing by exchanging content and byte count information with the data treatment server. In one embodiment, a new compression protocol header type is defined. In a second embodiment, a content flow label with a byte count field is inserted in a Generic Routing Encapsulation (GRE) header. In an alternate embodiment, the wireless gateway node implements an API to transfer the content flow label and byte count information over a signaling link. In yet another embodiment, the data treatment server performs the content based billing and similar mobile node services.
Abstract:
The Internet-based shipping, tracking, and delivery network supporting a plurality of digital image capture and processing instruments deployed aboard a plurality of pickup/delivery vehicles, wherein each digital image capture and processing instrument can upload digital images of shipping documents wirelessly to a cellular telephone which, in turn, transmits the digital images to one or more application servers and/or human-operated data-keying workstations supported on the network for machine and/or or human-assisted recognition-processing, and acquisition of shipping information contained in the digital images and the entry of said shipping information into an RDBMS maintained on the network for the purpose of supporting its shipping, tracking, and delivery operations.
Abstract:
A sensor, such as, for example, a gravity-responsive sensor, provides an output used to select an orientation of a display of a display device. For example, the output may indicate that the orientation of the display should comprise a portrait or landscape orientation, an orientation rotated, such as, for example, ninety degrees (90°), one hundred and eighty degrees (180°), two hundred and seventy degrees (270°), or the like. In addition, one or more manual switches, buttons, or display icons may be actuated or otherwise selected to manually set the orientation of the display.
Abstract:
An Internet-based shipping, tracking, and delivery network supporting the capture of shipping document images and recognition-processing thereof initiated from a point of shipment pickup and completed while shipments are transported to its first scanning point in said network so as to significantly increase velocity of shipping information through the network, as well as reduce delivery time over the network.
Abstract:
An Internet-based shipping, tracking, and delivery network supporting a plurality of digital image capture and processing instruments deployed at a plurality of pickup and delivery terminals. Each digital image capture and processing instrument can upload digital images of shipping documents to one or more application servers and/or human-operated data-keying workstations supported on the network for machine and/or human-assisted recognition-processing, and acquisition of shipping information contained in said digital images and the entry of shipping information into an RDBMS maintained on the network for the purpose of supporting its shipping, tracking, and delivery operations.
Abstract:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations, or modules, in which discrete aspects of the assay are performed on fluid samples contained in reaction receptacles. The analyzer includes stations for automatically preparing a specimen sample, incubating the sample at prescribed temperatures for prescribed periods, performing an analyte isolation procedure, and ascertaining the presence of a target analyte. An automated receptacle transporting system moves the reaction receptacles from one station to the next. The analyzer further includes devices for carrying a plurality of specimen tubes and disposable pipette tips in a machine-accessible manner, a device for agitating containers of target capture reagents comprising suspensions of solid support material and for presenting the containers for machine access thereto, and a device for holding containers of reagents in a temperature controlled environment and presenting the containers for machine access thereto. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte. The process is performed by automatically moving each of a plurality of reaction receptacles containing a solid support material and a fluid sample between stations for incubating the contents of the reaction receptacle and for separating the target analyte bound to the solid support from the fluid sample. An amplification reagent is added to the separated analyte after the analyte separation step and before a final incubation step.
Abstract:
A hydratable, highly absorbent keratin solid fiber or powder capable of absorbing a large weight excess of water may be produced by partially oxidizing hair keratin disulfide bonds to sulfonic acid residues and reacting the sulfonic acid residues with a cation. The neutralized suspension can be filtered, washed, and dried, leaving keratin solid which can be shredded into fibers and further ground into powder. Addition of water to the solid produces a hydrogel. The powder or hydrogel may be useful as an absorbent material, as a therapeutic for skin, or as an excipient. The keratin materials can be incorporated into nonwoven films. The hydrogel can be used as a biocompatible viscoelastic filler for implant applications. Another use for the absorbent keratin and keratin hydrogel is as an excipient in pharmaceutical and cosmetic applications.
Abstract:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations, or modules, in which discrete aspects of the assay are performed on fluid samples contained in reaction receptacles. The analyzer includes stations for automatically preparing a specimen sample, incubating the sample at prescribed temperatures for prescribed periods, performing an analyte isolation procedure, and ascertaining the presence of a target analyte. An automated receptacle transporting system moves the reaction receptacles from one station to the next. The analyzer further includes devices for carrying a plurality of specimen tubes and disposable pipette tips in a machine-accessible manner, a device for agitating containers of target capture reagents comprising suspensions of solid support material and for presenting the containers for machine access thereto, and a device for holding containers of reagents in a temperature controlled environment and presenting the containers for machine access thereto. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte. The process is performed by automatically moving each of a plurality of reaction receptacles containing a solid support material and a fluid sample between stations for incubating the contents of the reaction receptacle and for separating the target analyte bound to the solid support from the fluid sample. An amplification reagent is added to the separated analyte after the analyte separation step and before a final incubation step.