Abstract:
Systems and methods are disclosed for automatically or remotely rendering a solar array safe during an emergency or maintenance. A watchdog unit is disclosed for monitoring a signal from a central controller. If the signal is lost, interrupted, or becomes irregular, or if a shutdown signal is received, then the watchdog unit can shutdown one or more solar modules. Shutting down a solar module can mean disconnecting it from a power bus of the solar array or lowering the solar module voltage to a safe level.
Abstract:
Systems and methods to balance currents among a plurality of photovoltaic units connected in series. In aspect, a management unit is coupled between a photovoltaic energy production unit and a string of energy production units. The management unit has an energy storage element (e.g., a capacitor) connected to the photovoltaic energy production unit. The management unit further has a switch to selectively couple to the energy storage element and the photovoltaic energy production unit to the string. The management unit allows the current in the string to be larger than the current in the photovoltaic energy production unit.
Abstract:
Apparatuses and methods to firewall distributed energy sources. In one aspect, an apparatus includes: a first connector configured to interface with a distributed energy source; a second connector configured to interface with a connection point of an electric power system; at least one switch coupled between the first connector and the second connector; at least one sensor coupled with the switch; and a controller coupled with the at least one switch, the controller to use the at least one switch to selectively connect or disconnect an electric path between the first connector and the second connector based on signals from the at least one sensor.
Abstract:
Apparatuses and methods to reduce safety risks associated with photovoltaic systems by providing a safety switch on a photovoltaic panel. In one embodiment, a photovoltaic panel includes: at least one photovoltaic cell; a connector to output energy from the photovoltaic panel; and a switch coupled between the at least one photovoltaic cell and the connector. The switch is configured to disconnect the at least one photovoltaic cell from the connector during installation of the photovoltaic panel, and to connect the at least one photovoltaic cell with the connector after installation of the photovoltaic panel.
Abstract:
A method and apparatus for automated bidirectional integration of peripheral data sources for a production tool couples the system components together in a web-based arrangement. The process tools and the peripheral data sources are configured as websites to provide information to the system. Certain components of the system are also configured as browsers to obtain available information and use this information to make decisions and perform actions.
Abstract:
Solar panel theft protection system operable both during daytime and nighttime. Power is feed into a solar array system sufficient to operate local management units. The units monitor solar panels; in the event that a panel is disconnected, an alarm is set off.
Abstract:
Apparatuses and methods include a photovoltaic energy production unit to generate electricity. A local management unit is coupled between the photovoltaic energy production unit and a connection of energy production units forming a string bus. The local management unit includes a controller and switching circuitry. The controller provide a control for the switching circuitry to deliver electrical energy to the string bus. A communication transmission modulator is associated with the local management unit. The communication transmission modulator modulates the control with data to be transmitted from the local management unit over the string bus.
Abstract:
Systems and methods for local management units in a photovoltaic energy system. In one embodiment, a method implemented in a computer system includes: attempting to communicate on a first active channel with a master management unit from a local management unit that controls a solar module; if communication with the master management unit on the first active channel has not been established, attempting to communicate on a second active channel with the master management unit.
Abstract:
A method and system to provide a distributed local energy production system with high-voltage DC bus is disclosed. In one embodiment, a system comprises a management unit to be interconnected via a network bus to a set of link modules, each link module coupled to a separate local energy production unit, each link module to include a Maximum Power Point Tracking (MPPT) step-up converter and a parameter monitoring unit to produce parameter data for the respective local energy production unit, and the local energy production units to be coupled to a high voltage power line to deliver produced electrical energy to a consumer of the energy; and the management unit to receive measured parameters from the link modules, and to send control signals to link modules to provide individual operational control of the local energy production units, the management unit to be coupled to one or more separate computers to provide the computers with access to the parameter data and control of the local energy production units.
Abstract:
Apparatuses and methods include a solar array having one or more strings of series-connected local management units (LMUs). Each LMU is parallel-connected to one of a plurality of solar modules. The strings are connected in parallel via a parallel bus. Local string management units (LSMUs) can increase or decrease an output voltage of the solar array by upconverting or downconverting string output voltages from each string. LSMUs can also operate in a bypass mode to increase overall power output.