Abstract:
A data transmission apparatus for use in a separate-type base station is provided. The data transmission apparatus includes: a digital unit configured to generate first data that includes transmission method information indicating a selected transmission method and data to be transmitted; a time-division synchronization control unit configured to, in response to the selected transmission method being time-division multiplexing (TDM), generate second data by including synchronization information for transmitting the first data using TDM in the first data; and a wavelength conversion unit configured to convert at least one of the first data and the second data into one or more wavelength optical signals using a predefined wavelength or a predefined group of wavelengths and transmit the wavelength optical signals to one or more radio stations.
Abstract:
An optical network unit is provided that includes a communication detector configured to detect whether a communication is achieved between the ONU and at least one power source equipment (PSE), and a power controller configured to detect whether the PSE is powered and to control electrical power, which is provided from the PSE, based on at least one of the detection result about whether the communication is achieved between the ONU and the PSE and the detection result about the PSE is powered.
Abstract:
A semiconductor device includes an insulating layer and an undoped polysilicon layer that are stacked over a semiconductor substrate. The semiconductor substrate is exposed by removing the portions of the undoped polysilicon layer and the insulating layer. The trenches are formed by etching the exposed semiconductor substrate. Isolation layers are formed in the trenches, and a doped polysilicon layer is formed by implanting impurities into the undoped polysilicon layer.
Abstract:
An embodiment of the invention relates to a method of forming an isolation layer of a flash memory device. An isolation layer is formed using a PSZ-based material and a nitride film of liner form is deposited on a trench before the PSZ film is deposited. An oxide film can be prevented from remaining on a top of the sidewalls of a conductive film for a floating gate through an etch process employing the etch rate. The thickness of a dielectric film can be prevented from increasing when a dielectric film is deposited. Accordingly, the contact area of the floating gate and the dielectric film can be increased and the coupling ratio between the floating gate and the control gate can be improved.
Abstract:
A method of manufacturing nonvolatile memory devices comprises forming a plurality of floating gates spaced from each other over a semiconductor substrate, forming a dielectric layer on a surface of the floating gates, forming a capping layer on a surface of the dielectric layer, adding impurities to the capping layer, and forming a control gate over the capping layer containing the impurities.
Abstract:
Disclosed herein is a printed circuit board, including: a base substrate; insulation layers which are formed on both sides of the base substrate and in which trenches are formed; and circuit layers including circuit patterns and vias formed in the trenches using a plating process. The printed circuit board is advantageous in that trenches are formed in both sides of a base substrate, so that a fine circuit pattern can be simultaneously formed on both sides thereof, thereby simplifying the manufacturing process thereof.
Abstract:
Disclosed are an apparatus and method for detecting optical signals. The optical signal detection apparatus includes: a signal receiver to convert a received optical signal into an electrical signal; a threshold decision unit to establish a mathematical model based on the electrical signal and to decide an optimized threshold value based on the mathematical model; and a signal detector to detect the electrical signal based on the optimized threshold value. Hence, since threshold values optimized adaptively according to received signals are used, a bit error rate may be lowered and accordingly detection performance may be improved.
Abstract:
Provided are a photonic cross-connector system, a wavelength division multiplexing (WDM) system using the photonic cross-connector system, and an optical communication network based on the WDM system. The photonic cross-connector system includes: an optical coupler branching an input optical signal into a plurality of paths; a wavelength selective switch (WSS) extracting at least one wavelength signal from the input optical signal and outputting the extracted wavelength signal to at least one port; a WDM multi-casting apparatus simultaneously copying and reproducing the input optical signal into different wavelengths and changing modulation methods of the input optical signal into different types of modulation methods; an optical transmitter and/or receiver branching and coupling the input optical signal; and a control system controlling the optical coupler, the WSS, the WDM multicasting apparatus, and the optical transmitter and/or receiver.
Abstract:
Provided is an optical network in which a wavelength division multiplexing-based optical transmission scheme is implemented. An apparatus for cross-connecting an optical path includes a path switch including a plurality of input terminals receiving optical signals from other nodes, and a plurality of output terminals sending the optical signals to the other nodes, the path switch switching the path of the optical signal so that the optical signal input via one of the input terminals is output to one of the output terminals; and a wavelength converter converting a wavelength of the optical signal input via the input terminal and outputting the wavelength-converted optical signal to the output terminal according to a switching result of the path switch. Thus, inefficient use of a network resource due to wavelength collision can be prevented, the path can be automatically cross-connected and thus quickly established, path switching and branch combination can be performed irrespective of wavelength, and switching can be performed irrespective of direction.