Abstract:
An entry including multiple bits of unit cells each storing data bit is coupled to a match line. The match line is supplied with a charging current having a restricted current value smaller than a match line current flowing in a one-bit miss state in one entry, but larger than a match line current flowing in an all-bit match state in one entry. A precharge voltage level of a match line is restricted to a voltage level of half a power supply voltage or smaller. Power consumption in a search cycle of a content addressable memory can be reduced, and a search operation speed can be increased.
Abstract:
The image processing apparatus comprises a reading unit which simultaneously reads image data from two, an obverse and a reverse, surfaces of a document, and a compressing unit which compresses received image data. The apparatus further comprises a controlling unit which orchestrates a flow of image data from the reading unit to the compressing unit in such a manner that the image data corresponding to the obverse surface and the reverse surface is input into the compressing unit at different timing.
Abstract:
An image processing apparatus is connected to a plurality of functional units including an image processor which processes images. A process controller provides control over the entire operation. A ROM previously stores information about the content of the image processing. The process controller reads the information stored in the ROM and transfers this information in a host buffer provided with the image processor. The image processor processes the image data based on the information stored in the host buffer.
Abstract:
To solve problems associated with undesirable duplication of see-through back image in a double-sided input document, a method of and a system for substantially eliminating the undesirable see-through back images initially scanns a front side image and a back side image from the double-sided document and store the scanned images. The front side image has portions, and some of the portions include an original front image as well as a see-through back image from the back side image. An edge amount for each of the portions is determined in the front side image. The see-through back images are separated from the original front images based upon the edge amount. To further improve the correct removal of the undesired see-through back image, the above processed portions having a certain edge are smoothed. Character portions and dot pattern portions are further separated from background portions in the smoothed data. Finally, the intensity level of the character portions, the dot pattern portions and the background portions are adjusted by a corresponding predetermined conversion function so as to substantially eliminate the see-through back image.
Abstract:
In the image processing apparatus, an image data control unit is connected to at least one of an image reading unit, an image memory control unit, an image processing unit, and an image writing unit. The image data control unit receives any one of an image data read by the image reading unit, image data read by the image memory control unit, and image data processed by the image processing unit. The image data control unit transmits the received image data to any of the image memory control unit, the image processing unit, and the image writing unit.
Abstract:
The present invention improves the cycle characteristics of a non-aqueous electrolyte secondary cell that uses lithium cobalt oxide as a positive electrode active material. To this end, an element different from cobalt such as zirconium and titanium is added to the lithium cobalt oxide, acting as the positive electrode active material. The non-aqueous electrolyte contains a non-aqueous solvent containing diethyl carbonate at 10 to 30 volume percent on a base of 25 degree Celcius and contains an electrolyte salt.
Abstract:
Disclosed herein is a device that includes a first buffer circuit coupled between a first power supply line and a data terminal and a second buffer circuit coupled between a second power supply line and the data terminal. First and second internal data signals complementary to each other are supplied to a level shifter, thereby third and fourth internal data signals complementary to each other are generated by changing amplitude values of the first and second internal data signals. The first and the second buffer circuits are controlled based on the third and fourth internal data signals such that one of the first and second buffer circuits turns on and the other of the first and second buffer circuits turns off.
Abstract:
A splitter circuit in a semiconductor device includes a first inverter that receives an input signal and outputs an inverted signal, a second inverter that receives the inverted signal and outputs a non-inverted signal (a first output signal), a third inverter that receives the input signal and outputs an inverted signal (a second output signal) and an auxiliary inverter that shares an output signal line with the third inverter. The third inverter and the auxiliary inverter use an inverted signal of the input signal as power supplies.
Abstract:
Disclosed herein is a device that includes first and second buffer circuits electrically connected to a terminal and an output control circuit activating the first buffer circuit and deactivating the second buffer circuit in a first state and activating one of the first and second buffer circuits and deactivating the other of the first and second buffer circuits based on input data in a second state. The output control circuit is brought into one of the first and second states.
Abstract:
Disclosed herein is a device that includes a first buffer circuit coupled between a first power supply line and a data terminal and a second buffer circuit coupled between a second power supply line and the data terminal. First and second internal data signals complementary to each other are supplied to a level shifter, thereby third and fourth internal data signals complementary to each other are generated by changing amplitude values of the first and second internal data signals. The first and the second buffer circuits are controlled based on the third and fourth internal data signals such that one of the first and second buffer circuits turns on and the other of the first and second buffer circuits turns off.