Abstract:
A series of soluble α-diimine late transition metal catalysts has been invented. The catalysts demonstrate high activity and selectivity for linear α-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalyst. These catalysts can be used in a supported or unsupported form.
Abstract:
This invention relates to supported activators comprising the product of the combination of an ion-exchange layered silicate, an organoaluminum compound, and a heterocyclic compound, which may be substituted or unsubstituted. This invention further relates to catalyst systems comprising catalyst compounds and such activators, as well as processes to polymerize unsaturated monomers using the supported activators. For the purposes of this patent specification and the claims thereto, the term “activator” is used interchangeably with the term “co-catalyst”, the term “catalyst” refers to a metal compound that when combined with an activator polymerizes olefins, and the term “catalyst system” refers to the combination of a catalyst and an activator with or without a support. The terms “support” or “carrier”, for purposes of this patent specification, are used interchangeably and are any ion-exchange layered silicates.
Abstract:
Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C5-C24 &agr;-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ()of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ()of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C5-C24 &agr;-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.