Abstract:
A use of a hemimellitic acid ester of formula I as a base oil a lubricant composition for lubricating tribological systems. In some embodiments, R1, R2 and R3, are independently of one another: a C5 to C20 aromatic group, a C5 to C20 cycloalkyl group, an unsubstituted, branched or unbranched C1 to C20 alkyl group, and/or a C1 to C5 alkyl group comprising at least one substituent selected from the group consisting of cycloalkyl groups and aromatic groups. In some embodiments, the hemimellitic acid ester of formula I is provided as a mixture of different compounds of formula I and/or the hemimellitic acid ester of formula I comprises groups R1, R2 and R3 at least partially differing from one another.
Abstract:
Disclosed is a method for producing a quality lubricant base oil (meeting the standard of Group III or higher) comprising: decarbonylating mixed fatty acids derived from oils and fats of biological origin to produce mixed olefins; oligomerizing the mixed olefins to produce an olefinic lubricant base oil; and performing hydrogenation to remove olefins from the olefinic lubricant base oil.
Abstract:
A process to convert paraffinic feedstocks into renewable poly-alpha-olefins (PAO) basestocks. In a preferred embodiment of the invention, renewable feed comprising triglycerides and/or free fatty acids are hydrotreated producing an intermediate paraffin feedstock. This paraffin feedstock is thermally cracked into a mixture of olefins and paraffins comprising linear alpha olefins. The olefins are separated and the un-reacted paraffins are recycled to the thermal cracker. Light olefins preferably (C2-C6) are oligomerized with a surface deactivated zeolite producing a mixture of slightly branched oligomers comprising internal olefins. The heavier olefins (C6-C16) are oligomerized, preferably with a BF3 catalyst and co-catalyst to produce PAO products. The oligomerized products can be hydrotreated and distilled together or separate to produce finished products that include naphtha, distillate, solvents, and PAO lube basestocks.
Abstract:
The invention relates to a food-grade high-temperature lubricant, more particularly a high-temperature oil and a high-temperature grease, comprising the following components: a) at least one oil selected from a trimellitic ester or a mixture of different trimellitic esters, alkylaromatics, preferably an aliphatically substituted naphthalene, or estolides; b) a hydrogenated or fully hydrogenated polyisobutylene or a mixture of hydrogenated or fully hydrogenated polyisobutylene; and c) additives individually or in combination. In the case of the high-temperature grease, a thickener is added.
Abstract:
This disclosure relates to a liquid syndiotactic polyalphaolefin, sPAO, comprising one or more C4 to C24 monomers, said sPAO having: a) an rr triad content of 5 to 50% as measured by 13C NMR; b) an mr triad content of 25 to 60% as measured by 13C NMR, where the mr to mm triad ratio is at least 1.0; c) a pour point of Z° C. or less, where Z=0.0648X−51.2, where X=kinematic viscosity at 100° C. as reported in centistokes (cSt); d) a kinematic viscosity at 100° C. of 100 cSt or more (alternatively 200 cSt or more); e) a ratio of mr triads to rr triad (as determined by 13C NMR) of less than 9; f) a ratio of vinylidene to 1,2-disubstituted olefins (as determined by 1H NMR) of less than 8; g) a viscosity index of 120 or more; and h) an Mn of 40,000 or less. This disclosure further relates to processes to make and use sPAOs, including those having any combination of characterics a) to h).
Abstract:
The invention provides a lubricating oil for refrigerators, comprising (a) at least one ester represented by the formula (1) wherein R1 is C1 to C18 straight-chain alkyl or C3 to C18 branched-chain alkyl; R2 is H, C1 to C18 straight-chain alkyl or C3 to C18 branched-chain alkyl; with the proviso that the total number of carbons contained in the alkyls represented by R1 and R2 is 2 to 18 and that when R2 is H, R1 is branched-chain alkyl; and R3 is C1 to C20 straight-chain alkyl, C3 to C20 branched-chain alkyl or C3 to C10 cycloalkyl, optionally in combination with (b) at least one member selected from the group consisting of fatty acid polyol esters, phthalic acid esters, alicyclic dicarboxylic acid esters, polyvinyl ethers, hydrocarbon oils and polyalkylene glycols; as well as a method for lubricating a refrigerator using such a lubricating oil, and a working fluid composition for refrigerators comprising (I) component (a) or components (a) and (b) and (II) a refrigerant.
Abstract:
A synthetic hydrocarbon fluid is prepared by oligomerizing an olefin reactant in the presence of a catalyst prepared by reacting tungsten hexafluoride and hydrogen fluoride at a moderate temperature. For example, 1-butene is oligomerized at a temperature of about 40.degree. C. in the presence of a catalyst obtained by reacting tungsten hexafluoride and hydrogen fluoride in a four to one mol ratio. The liquid oligomer product is then hydrogenated to remove residual unsaturation.
Abstract:
The composition according to the present disclosure is a composition for forming a lubricant coating layer on or above a threaded connection for pipes, and contains polyisobutylene, a metal soap, a wax and a basic metal salt of an aromatic organic acid. The threaded connection for pipes according to the present disclosure includes: a pin having a pin-side contact surface which includes a pin-side threaded portion; a box having a box-side contact surface which includes a box-side threaded portion; and a lubricant coating layer formed from the aforementioned composition as an outermost layer on or above at least one of the pin-side contact surface and the box-side contact surface.
Abstract:
Processes to prepare branched polyolefins for lubricant applications comprise combining at least one olefin and a coordination-insertion catalyst under conditions such that at least one oligomer product is formed. Low molecular weight by-products are fractionated out and the oligomer product is converted to a saturated hydrocarbon via hydrogenation.
Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains at least one branched hydrocarbon having at least about 25% of the carbons in the form of methyl groups, or at least one polyol ester of at least one branched mono-carboxylic acid. A lubricating engine oil having a composition that contains at least one branched hydrocarbon having at least about 25% of the carbons in the form of methyl groups, or at least one polyol ester of at least one branched mono-carboxylic acid. The lubricating engine oils are useful as passenger vehicle engine oil (PVEO) products.