Abstract:
Associating service agents in communication over a network to one or more respective clients coupled to the network at respective ports of the network is described. At a first service agent, a first signal is received from a first client coupled to the network at a first port. The first signal propagates over a first signal propagation path between the first service agent and the first port. An association between the first service agent and the first client is established based at least in part on a difference between: the first signal propagation path between the first service agent and the first port, and a second signal propagation path between the first service agent and a second port or between a second service agent and the first port.
Abstract:
A method and corresponding system for operating in a network in which stations communicate over a shared medium are presented. The shared medium has at least one varying channel characteristic that varies approximately periodically. The method includes providing repeated beacon transmissions from a coordinator station for coordinating transmissions among a plurality of the stations, wherein at least some beacon transmissions are synchronized to the varying channel characteristic; and transmitting from a first station to at least one receiving station during a time slot determined based on at least one of the beacon transmissions received by the first station from the coordinator station.
Abstract:
Communicating between stations over a shared medium comprises: receiving a first waveform at a first station transmitted over the shared medium from a second station, the first waveform including a payload having multiple segments, and during reception of a first segment of the payload, initiating processing of one or more segments of the payload received before the first segment of the payload to generate acknowledgement information that specifies which of one or more segments of the payload including the one or more processed segments have been correctly decoded by the first station; transmitting a second waveform from the first station over the shared medium, the second waveform including the acknowledgement information; and transmitting a third waveform from the first station over the shared medium, after transmitting the second waveform, the third waveform including acknowledgement information that specifies which of one or more segments of the payload including the first segment of the payload have been correctly decoded by the first station.
Abstract:
Communicating between stations over a shared medium comprises: transmitting a waveform from a first station over the shared medium at a time that is based on a shared time reference shared by multiple of the stations, the waveform including at least a first symbol, having a predetermined symbol length, comprising a first set of frequency components at predetermined carrier frequencies modulated with preamble information stored in a second station and a second set of frequency components at predetermined carrier frequencies modulated with information to be communicated to at least one station, with the carrier frequencies of the first and second sets of frequency components being integral multiples of a frequency interval determined by the inverse of the symbol length; monitoring the shared medium at a second station, before transmission of the waveform from the first station, to detect a start of the first symbol of the waveform at one of multiple time slot boundaries, the monitoring including, after each of multiple time slot boundaries, periodically sampling a series of values received over the shared medium starting at the beginning of the most recent time slot boundary and processing the sampled values to generate a metric value that indicates whether the start of the first symbol of the waveform has been detected; and in response to detecting the start of the first symbol of the waveform, demodulating the first symbol of the waveform from values sampled based on the shared time reference.
Abstract:
A method of operating in a network in which a plurality of stations communicate over a shared medium, comprising providing a physical layer (e.g., PHY) for handling physical communication over the shared medium; providing a high level layer (e.g., PAL) that receives data from the station and supplies high level data units (e.g., MSDUs) for transmission over the medium; providing a MAC layer that receives the high level data units from the high level layer and supplies low level data units (e.g., MPDUs) to the physical layer; at the MAC layer, encapsulating content from a plurality of the high level data units; dividing the encapsulated content into a plurality of pieces (e.g., segments) with each piece capable of being independently retransmitted; and supplying low level data units containing one or more of the plurality of pieces.
Abstract:
A method and corresponding system for communicating between stations in a network are presented. The method includes providing repeated beacon transmissions from a coordinator station for coordinating transmissions among a plurality of the stations; transmitting from a first station to a second station during a time slot assigned to the first station by at least one of the beacon transmissions; and transmitting from the first station information that grants permission to the second station to transmit during at least a portion of a time slot assigned to the first station.
Abstract:
Methods and systems are operable to aggregate data. A plurality of data units can be received. The data units can be combined based upon a class associated with the data and a next hop associated with the data. A link can be provided for the combined data units based on service quality requirements for the traffic class associated with the class.
Abstract:
A method and corresponding system for operating in a network in which stations communicate over a shared medium are presented. The shared medium has at least one varying channel characteristic that varies approximately periodically. The method includes providing repeated beacon transmissions from a coordinator station for coordinating transmissions among a plurality of the stations, wherein at least some beacon transmissions are synchronized to the varying channel characteristic; and transmitting from a first station to at least one receiving station during a time slot determined based on at least one of the beacon transmissions received by the first station from the coordinator station.
Abstract:
A method and corresponding system for communicating between stations in a network is presented. The method includes providing repeated beacon transmissions from a coordinator station for coordinating transmissions among the stations; transmitting a signal from a first station and receiving the signal at a second station; and performing one or both of: generating the signal based on a local clock at the first station and time adjustment information in a beacon transmission received by the first station, and sampling the signal at sample times based on a local clock at the second station and time adjustment information in a beacon transmission received by the second station.
Abstract:
In a network, some data are transmitted between stations during time slots in contention free periods. Selecting the time slots includes collecting timing information at some stations in the network. The timing information indicates the times of existing time slots used by stations whose transmissions can be reliably received by the station collecting the timing information. The timing information is distributed to other stations in the network. A new time slot for transmission between a first and a second station is selected based at least on timing information indicating the times of existing time slots used by stations whose transmissions can be reliably received by at least one of the first and second station.