Abstract:
A battery module for a rechargeable battery. The battery module has low contact resistance and includes: a plurality of electrode assemblies incorporating a positive electrode, a negative electrode and a separator disposed between the positive electrode and the negative electrode; a housing installed with the electrode assembly; and at least one conductive barrier inserted in the housing thereby dividing the space inside the housing, and electrically connecting the plurality of electrode assemblies.
Abstract:
Provided are A carbon-based material having a FWHM ranging from 2.5° to 6.0° at 2θ ranging from 20° to 30° in a XRD pattern using CuKα ray and a peak area ratio ranging from 1.0 to 100.0 between FWHM at 2θ ranging from 20° to 30° and FWHM at 2θ ranging from 50° to 53°, and a method of manufacturing the carbon-based material, and a negative electrode and a rechargeable lithium battery including the same.
Abstract:
A crystalline carbon material with controlled interlayer spacing and a method of manufacturing the crystalline carbon material are disclosed. The crystalline carbon material has peaks of a (002) plane at 2θ=23°±5.0° and 2θ=26.5°±1.0° when X-ray diffraction is measured using a CuKα ray. The peak height at 2θ=23°±5.0° is higher than the one at 2θ=26.5°±1.0°.
Abstract:
A crystalline carbon material with controlled interlayer spacing and a method of manufacturing the crystalline carbon material are disclosed. The crystalline carbon material has peaks of a (002) plane at 2θ=23°±5.0° and 2θ=26.5°±1.0° when X-ray diffraction is measured using a CuKα ray. The peak height at 2θ=23°±5.0° is higher than the one at 2θ=26.5°±1.0°.
Abstract:
Disclosed are a positive electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same, and the positive electrode includes a current collector; and a positive active material layer including an additive which is LixV2O5 (1
Abstract translation:公开了一种用于可再充电锂电池的正电极和包括其的可再充电锂电池,正电极包括集电器; 和包含Li x V 2 O 5(1
Abstract:
Disclosed is a positive electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same. The positive electrode includes a current collector; and a positive active material layer disposed on the current collector and including a lithium vanadium oxide-based positive active material represented by the following Chemical Formula 1. LixV2-yMyO5 [Chemical Formula 1] In Chemical Formula 1, M is one or more selected from the group consisting of aluminum (Al), magnesium (Mg), zirconium (Zr), titanium (Ti), strontium (Sr), copper (Cu), cobalt (Co), nickel (Ni), manganese (Mn), and a combination thereof, 1
Abstract:
A positive electrode for a rechargeable lithium battery capable of providing a high voltage and a high voltage rechargeable lithium battery including the same, wherein the positive electrode includes a positive active material and a capacitor-reactive carbonaceous material having a specific surface area at or between 10 m2/g and 100 m2/g.
Abstract:
In a rechargeable non-aqueous electrolyte secondary battery using positive electrodes, negative electrodes and a non-aqueous electrolytic solution, additives to the electrolytic solution are used in combination, preferably in combination of at least two compounds selected from o-terphenyl, triphenylene, cyclohexylbenzene and biphenyl, and thus there are provided batteries excellent in safety and storage characteristics.
Abstract:
A negative-electrode active material for nonaqueous electrolyte secondary battery, comprising a silicon compound capable of inserting and extracting lithium ion, wherein the silicon compound contains silicon-hydrogen bonds and the silicon-hydrogen bonds are introduced into the compound by reduction of at least one compound selected from the group consisting of silicon oxide, silicon nitride and silicon carbide with hydrogen, and a negative electrode for nonaqueous electrolyte secondary battery having a layer containing the negative-electrode active material in the above arrangement formed on a current collector.
Abstract:
A negative electrode for non-aqueous electrolyte secondary batteries has a mixture layer including a composite negative electrode active material which is composed of active material cores capable of charging and discharging at least lithium ions; carbon nanofibers; and catalyst elements. The carbon nanofibers are attached to the surfaces of the active material cores. The catalyst elements are at least one selected from the group consisting of copper, iron, cobalt, nickel, molybdenum, and manganese, and promote the growth of the carbon nanofibers. The active material cores have the carbon nanofibers therebetween.