Abstract:
Provided are an endoscopic diagnosis support method, an endoscopic diagnosis support apparatus, and an endoscopic diagnosis support program, all of which are capable of extracting an image picking up a bleeding region easily and accurately from among a large number of endoscopic images picked up by an endoscope observation apparatus by calculating a tone from a color signal of each of plural image zones obtained by dividing the endoscopic image; and discerning an image zone including a bleeding region by judging a difference among each of the plural image zones based on a tone of the calculated each image zone in the endoscopic diagnosis support apparatus for supporting an endoscopic diagnosis performed based on an endoscopic image picked up by an endoscope observation apparatus.
Abstract:
An image recording apparatus which includes a time-serial image recording arrangement for recording time-serial images of an object, and still image filling arrangements for recoding a still image. The apparatus also includes an outputting arrangement capable of outputting an image information data of at least a part of the time-serial images to be recorded or having been recorded by the time-serial image recording arrangement, which is used as a standard for observing variations in the time-serial images of the object which occur with lapse of time. The outputting arrangement includes an extracting arrangement for extracting a selected feature of at least one image among the time-serial images as the image information to be a standard of the position and a composing arrangement for composing and outputting image information of the selected feature extracted by the extracting arrangement and for composing and outputting the time-serial images.
Abstract:
When an operation instruction is input by a first (second) control output instruction input device, locus calculation means calculates a locus of movement of a first (second) therapeutic device on the basis of any one of joint sections, which is instructed to operate. On the basis of a calculation result by the locus calculation means, therapeutic device operation control means controls an operation of the first (second) therapeutic device by a first (second) active mechanism. Thereby, there is provided an endoscope apparatus which can improve the operational efficiency and positional precision of the therapeutic device.
Abstract:
Provided are an endoscopic diagnosis support method, an endoscopic diagnosis support apparatus, and an endoscopic diagnosis support program, all of which are capable of extracting an image picking up a bleeding region easily and accurately from among a large number of endoscopic images picked up by an endoscope observation apparatus by calculating a tone from a color signal of each of plural image zones obtained by dividing the endoscopic image; and discerning an image zone including a bleeding region by judging a difference among each of the plural image zones based on a tone of the calculated each image zone in the endoscopic diagnosis support apparatus for supporting an endoscopic diagnosis performed based on an endoscopic image picked up by an endoscope observation apparatus.
Abstract:
A medical image processing apparatus includes a selection portion that selects a pixel of interest from an image composed of a plurality of pixels and obtained by picking up an image of a living tissue, a first feature value calculation portion that calculates a first feature value on the basis of color tone of the pixel of interest and color tones of surrounding pixels, a second feature value calculation portion that calculates a second feature value on the basis of the color tone of the pixel of interest and the color tones of surrounding pixels, an evaluation value calculation portion that calculates an evaluation value on the basis of the first feature value and the second feature value, and an evaluation value judgment portion that judges whether the pixel of interest is a pixel constituting the linear structure, on the basis of the evaluation value.
Abstract:
A plurality of images inputted in an image signal input portion are divided into a plurality of regions by an image dividing portion, and a feature value in each of the plurality of regions is calculated by a feature value calculation portion and divided into a plurality of subsets by a subset generation portion. On the other hand, a cluster classifying portion classifies a plurality of clusters generated in a feature space into any one of a plurality of classes on the basis of the feature value and occurrence frequency of the feature value. And a classification criterion calculation portion calculates a criterion of classification for classifying images included in one subset on the basis of a distribution state of the feature value in the feature space of each of the images included in the one subset.
Abstract:
A plurality of images inputted in an image signal input portion are divided into a plurality of regions by an image dividing portion, and a feature value in each of the plurality of regions is calculated by a feature value calculation portion and divided into a plurality of subsets by a subset generation portion. On the other hand, a cluster classifying portion classifies a plurality of clusters generated in a feature space into any one of a plurality of classes on the basis of the feature value and occurrence frequency of the feature value. And a classification criterion calculation portion calculates a criterion of classification for classifying images included in one subset on the basis of a distribution state of the feature value in the feature space of each of the images included in the one subset.
Abstract:
There is provided a medical image processing apparatus including an image-extracting section extracting a frame image from in vivo motion picture data picked up by an in vivo image pickup device or a plurality of consecutively picked-up still image data, and an image analysis section analyzing the frame image extracted by the image-extracting section to output an image analysis result. The image analysis section includes a first biological-feature detection section detecting a first biological feature, a second biological-feature detection section detecting, based on a detection result obtained by the first biological feature detection section, a second biological feature in a frame image picked up temporally before or after the image used for detection by the first biological feature detection section; and a condition determination section making a determination for a biological condition based on a detection result obtained by the second biological feature detection section to output the determination.
Abstract:
An endoscope device obtains tissue information of a desired depth near the tissue surface. A xenon lamp (11) in a light source (4) emits illumination light. A diaphragm (13) controls a quantity of the light that reaches a rotating filter. The rotating filter has an outer sector with a first filter set, and an inner sector with a second filter set. The first filter set outputs frame sequence light having overlapping spectral properties suitable for color reproduction, while the second filter set outputs narrow-band frame sequence light having discrete spectral properties enabling extraction of desired deep tissue information. A condenser lens (16) collects the frame sequence light coming through the rotating filter onto the incident face of a light guide (15). The diaphragm controls the amount of the light reaching the filter depending on which filter set is selected.
Abstract:
There is provided a medical image processing apparatus including an image-extracting section extracting a frame image from in vivo motion picture data picked up by an in vivo image pickup device or a plurality of consecutively picked-up still image data, and an image analysis section analyzing the frame image extracted by the image-extracting section to output an image analysis result. The image analysis section includes a first biological-feature detection section detecting a first biological feature, a second biological-feature detection section detecting, based on a detection result obtained by the first biological feature detection section, a second biological feature in a frame image picked up temporally before or after the image used for detection by the first biological feature detection section; and a condition determination section making a determination for a biological condition based on a detection result obtained by the second biological feature detection section to output the determination.