Abstract:
Concentrations of a target analyte in a gas mixture containing one or more background analytes having potentially interfering spectral absorption features can be calculated by compensating for background analyte absorption at a target wavelength used to quantify the target analyte. Absorption can be measured at a reference wavelength chosen to quantify the concentration of the background analyte. Using a background gas adjustment factor or function, the absorption measured at the reference wavelength can be used to calculate absorption due to the background analyte at the target wavelength and thereby compensate for this background absorption to more accurately calculate the target analyte concentration in real or near real time. Additional background analytes can optionally be compensated for by using one or more additional reference wavelengths.
Abstract:
The invention discloses a method for breeding transgenic plants with the high antiviral property and the application of the method. The inventive method comprises the following steps of: a. checking the frequency of codon usage in a host and determining the rare codons in the host, modifying the codons in a target gene so that some codons in the target gene are mutated into the rare synonymous codons in the host plant; b. constructing a vector containing the target gene with the codon modifications, to be used for transforming plants; c. transforming the plants with the above recombinant vector to obtain the regenerative transgenic plants; d. detecting the transformed plants, screening the transgenic plants in which gene silencing occurs in the target gene, and thereby obtaining the transgenic plants with the high antiviral property. The invention method can be used in breeding highly efficient and stable antiviral transgenic plants.
Abstract:
A layered heater structure including an electrode layer and a localized tuning method for tuning the electrode layer of a layered heater structure with high precision is provided. The localized tuning method tunes the electrode layer to its proper local resistance to minimize temperature offsets on the heater surface and thus provide a desired thermal profile that is in marked contrast to conventional, non-localized resistance tuning approaches based on thickness trimming practices, such as grinding or blasting, or resistivity adjustment, such as local heat treatment.
Abstract:
The present invention provides a microarray for detecting a genotype at a polymorphic site in a plurality of nucleic acid samples, comprising a first set of nucleic acid fragments derived from the samples and a second set of nucleic acid fragments derived from a plurality of references immobilized thereon. The invention also provides a microarray comprising a set of nucleic acid fragments immobilized on the surface of the microarray, wherein the nucleic acid fragments are derived from the samples by amplifying a region in the sample containing the polymorphism through asymmetric PCR amplification. Methods of using and making the microarrays are also provided.
Abstract:
An optical demodulator and accompanying method(s) that demodulates a DQPSK signal employing a single optical delay interferometer comprising a free-space Michelson interferometer having two optical paths, connected to a 1×2 coupler. Positioned within an arm of the Michelson interferometer is a phase shifter that produces a phase difference of π/2 between the two paths. The resulting demodulator is compact, reliable, and may be constructed to be substantially immune from undesirable thermal sensitivities.
Abstract:
Digital compensation of the polarization-mode dispersion (PMD) effects experienced by an optical signal in a transmission link is achieved. A digital representation of the optical fields of two orthogonal polarization components of an optical signal, defined by a polarization beam splitter (PBS), is first obtained. The fiber transmission link is treated as a concatenation of multiple virtual PMD segments, each having two specific principle-state-of-polarization (PSP) axes and causing a differential group-delay (DGD) and a phase delay between two signal components that are polarized along the two PSP axes. The best guesses of the parameters of the PMD segments and the relative orientation between the PSP axes of the last PMD segment and the characteristic polarization axes of the PBS are dynamically obtained. The digital representation of at least one generic component of the field of the optical signal is then computed through matrix operations by using the best guesses.
Abstract:
Provided are a thin film transistor (TFT) array substrate and the method manufacturing thereof. The TFT array substrate comprising: a substrate, and a gate line and a data line formed on the substrate, the gate line and the data line being separated by a gate insulating layer therebetween and intersecting to define a pixel unit, the pixel unit at least including a TFT device and a pixel electrode. The data line and a source electrode of the thin film transistor device are formed as an integral structure, and an active layer is formed below both the data line and the source electrode of the thin film transistor device.
Abstract:
An apparatus and method for generating chirp-free return-to-zero differential phase-shift keyed optical signals using a modulator driven by at least one 3-level return-to-zero drive signals.
Abstract:
A heat transfer composite including a plurality of pyrolytic graphite parts and a non-carbonaceous matrix holding the pyrolytic graphite parts in a consolidated mass. In one embodiment, the heat transfer composite includes a quantity of pyrolytic graphite parts randomly distributed in the non-carbonaceous matrix. In another embodiment, the heat transfer composite includes distinct layers of pyrolytic graphite parts disposed in between the layers of sheets comprising non-carbonaceous materials. In still another embodiment, the heat transfer composite comprises a substrate containing at least one non-carbonaceous matrix containing at least one pyrolytic graphite part in a consolidated mass. The matrix is affixed to the substrate for conveying heat away from a heat source.
Abstract:
Method and apparatus for routing messages in a network includes first filters to provide frequency-based message signals converted from an optically-based signal and mixers adapted to mix the frequency-based message signals with sub-carriers to generate frequency-based sub-carrier modulated message signals. A frequency generator connected to the mixers provides the sub-carriers to the mixers and a combiner connected to the mixers combines the frequency-based sub-carrier modulated message signals. Second filters connected to the combiner receive and group the frequency-based sub-carrier modulated message signals. Optical transmitters connected to second filters optically convert and transmit the frequency-based sub-carrier modulated message signals. The frequency generator generates and applies a particular sub-carrier frequency to one of the mixers according to information contained in the frequency-based message signal. The information is encoded into the frequency-based message signal via a generalized MPLS (GMPLS) label contained in a header portion of the frequency-based message signal.