Abstract:
For a method fabricating a dihedral corner reflector array optical element, a molding die having a reversal shape of the prism bodies is used. Each prism body has a frustum shape having an end plane whose area is smaller than that of the base plane side of the substrate. Each prism body is composed of a rectangular parallelepiped portion including the orthogonal plane sides to be a dihedral corner reflector and a taper portion integrated therewith having sides being non-parallel to the orthogonal plane sides. The method includes clamping the molding die to define a cavity therein; forming the optical element made from molten resin in the cavity; and parting the optical element from the molding die. The molding dies are relatively moved in a parting direction that the molding die leaves the orthogonal plane sides before anything else to part the optical element.
Abstract:
A Ni-based single crystal superalloy which has the following composition: Co: 0.0 wt % or more to 15.0 wt % or less, Cr: 4.1 to 8.0 wt %, Mo: 2.1 to 4.5 wt %, W: 0.0 to 3.9 wt %, Ta: 4.0 to 10.0 wt %, Al: 4.5 to 6.5 wt %, Ti: 0.0 to 1.0 wt %, Hf: 0.00 to 0.5 wt %, Nb: 0.0 to 3.0 wt %, Re: 8.1 to 9.9 wt % and Ru: 0.5 to 6.5 wt % with the remainder including Ni and unavoidable impurities. As a result, the Ni-based single crystal superalloy which includes more than 8 wt % of Re in the composition ratio and has excellent specific creep strength and the turbine blade incorporating the Ni-based single crystal superalloy may be made.
Abstract:
A Ni-based single crystal superalloy which has the following composition: Co: 0.0 wt % or more to 15.0 wt % or less, Cr: 4.1 to 8.0 wt %, Mo: 2.1 to 6.5 wt %, W: 0.0 to 3.9 wt %, Ta: 4.0 to 10.0 wt %, Al: 4.5 to 6.5 wt %, Ti: 0.0 to 1.0 wt %, Hf: 0.00 to 0.5 wt %, Nb: 0.0 to 3.0 wt %, Re: 3.0 to 8.0 wt % and Ru: 0.5 to 6.5 wt % with the remainder including Ni and unavoidable impurities, wherein P1≦700 is satisfied in which P1 represents a parameter 1, which is obtained by a formula: P1=137×[W (wt %)]+24×[Cr (wt %)]+46×[Mo (wt %)]−18×[Re (wt %)]. The Ni-based single crystal superalloy has excellent specific creep strength.
Abstract:
An addressee recognizing apparatus recognizes the addressee of matter to be delivered. A database stores a description format including at least a described position, the number of character lines, and the length of each character line in a sender area on the matter to be delivered. When a scanner obtains an image, a plurality of addressee candidate areas are obtained from the image. The apparatus determines whether the description format for each of the extracted candidates matches the description format for the sender area stored in the database. If the description format for the candidate is determined to match the description format for the sender area, the candidate is prohibited from being recognized as the addressee area.
Abstract:
An embedded device communicates with another device via an external proxy server acting for the embedded device to control communication. The embedded device includes a communication device capable of communicating with the proxy server, a storage unit storing a state of communication with the other device, an updating unit, a response unit responding to the task with a result of the updating of the communication state that has been performed in accordance with the control request, and a control instruction unit transmitting, to the proxy server by means of the communication device, an instruction for changing a state of communication with the other device in the proxy server to the communication state stored in the storage.
Abstract:
A reaction control material that is Co, Cr or Ru, or an alloy having main component selected from a group consisting of Co, Cr, Ru is applied to the surface of an Ni-base superalloy before applying aluminum diffusion coating to the Ni-base superalloy. Thereby, it is possible to enhance the oxidation resistance of the Ni-base superalloy, and to control formation of a secondary reaction zone.
Abstract:
An addressee recognizing apparatus recognizes the addressee of matter to be delivered. A database stores a description format including at least a described position, the number of character lines, and the length of each character line in a sender area on the matter to be delivered. When a scanner obtains an image, a plurality of addressee candidate areas are obtained from the image. The apparatus determines whether the description format for each of the extracted candidates matches the description format for the sender area stored in the database. If the description format for the candidate is determined to match the description format for the sender area, the candidate is prohibited from being recognized as the addressee area.
Abstract:
A Ni-based single crystal super alloy capable of improving strength by preventing precipitation of a TCP phase at high temperatures may be obtained by a Ni-based single crystal super alloy having a composition consisting of 5.0-7.0 wt % Al, 4.0-8.0 wt % Ta, 2.9-4.5 wt % Mo, 4.0-8.0 wt % W, 3.0-6.0 wt % Re, 0.01-0.50 wt % Hf, 2.0-5.0 wt % Cr, 0.1-15.0 wt % Co and 1.0-4.0 wt % Ru in terms of its weight ratio, with the remainder consisting of Ni and unavoidable impurities. Preferably, the composition of Co in the Ni-based single crystal super alloy is limited to 0.1-9.5 wt %.
Abstract:
An international mail determination unit determines whether or not the postal matter of interest is foreign mail, on the basis of the collation results of the seal description information collation unit, address format collation unit, address word collation unit, delivery area code format collation unit, and country name identification word collation unit (or some of these units). When the international mail determination unit determines that the postal matter of interest is foreign mail, the country name determination unit determines a country as a destination of that postal matter on the basis of the collation results of the above five collation units (or some of these units).
Abstract:
The present invention is to obtain a Ti—Zn—Mn—V—Fe based hydrogen storage alloy having the excellent hydrogen absorbing and discharging performance at a low cost. An alloy represented by the general formula: Ti1−xZrxMnw−y−zVyFez (wherein 0≦x≦0.5, 0
Abstract translation:本发明以低成本获得具有优异的吸氢放电性能的Ti-Zn-Mn-V-Fe系储氢合金。 产生由以下通式表示的合金:Ti1-xZrxMnw-y-zVyFez(其中0 <= x <= 0.5,0