Abstract:
A vehicle drive control device includes an initially determined request acceleration calculation means for calculating an initially determined request acceleration, an automatic drive control means for receiving the initially determined request acceleration and applying a predetermined torque to each wheel, a torque calculation means for calculating an allowable torque not causing a slip at each wheel when the allowable torque is applied thereto, on the basis of a vertical load applied to thereto and a friction coefficient of a road surface, a limit acceleration calculation means for calculating a limit acceleration acting on the vehicle in a case where the calculated allowable torque is applied to each wheel, and a request acceleration determination means for obtaining a request acceleration on the basis of the limit acceleration and the initially determined request acceleration, and for outputting the request acceleration, replacing the initially determined request acceleration, to the automatic drive control means.
Abstract:
In an automatic transmission position control by a motor, it is determined whether the present instant belongs to a starting period, that is, the present instant is immediately after resetting of a control unit or application of power to it. If it is the starting period, an actual shift position that is detected from an output of an output shaft sensor for detecting a rotation position of a motor is set as an instructed shift position. With this measure, even if the control unit is reset for a certain reason while the vehicle is running, the instructed shift position is not changed in association with the resetting. This prevents trouble that the shift position is switched contrary to the intention of the driver, whereby the reliability of a position switching control can be increased.
Abstract:
In an automatic transmission position control by a motor, it is determined whether the present instant belongs to a starting period, that is, the present instant is immediately after resetting of a control unit or application of power to it. If it is the starting period, an actual shift position that is detected from an output of an output shaft sensor for detecting a rotation position of a motor is set as an instructed shift position. With this measure, even if the control unit is reset for a certain reason while the vehicle is running, the instructed shift position is not changed in association with the resetting. This prevents trouble that the shift position is switched contrary to the intention of the driver, whereby the reliability of a position switching control can be increased.
Abstract:
A first ignition cylinder that performs ignition first is set based on an engine stop position in automatic start. Existence/nonexistence of a misfire in the first ignition cylinder is determined based on whether a difference ΔNe between engine rotation speed at a predetermined crank angle in an interval from timing immediately before the ignition to timing immediately after the ignition of the first ignition cylinder (e.g., at TDC of first ignition cylinder) and engine rotation speed at a predetermined crank angle before ignition of a second ignition cylinder (e.g., at TDC of second ignition cylinder) is equal to or smaller than a predetermined misfire determination threshold value Nef. When misfire time number of the first ignition cylinder exceeds a predetermined value, fuel supply to the first ignition cylinder is prohibited and the automatic start is started from the second ignition cylinder.
Abstract:
When an engine stop demand is generated and an engine speed is less than or equal to a specified value Ne1, the engine speed is increased once and the engine stop control is started. Even if the engine speed is low at a time of the engine stop demand, the engine stop control period (engine rotational angle) can be ensured. The engine stop position can be controlled to a target stop position with high accuracy.
Abstract:
Disclosed is a piezoelectric component (1) comprising a piezoelectric transducer (10) wherein a pair of electrodes (20a, 20b) are formed on both major surfaces of a piezoelectric substrate (11), a pair of frame members (30a, 30b) fitted to both major surfaces of the piezoelectric transducer (10), a pair of sealing substrates (40a, 40b) composed of a light-transmitting resin material and so fitted as to cover the frame members (30a, 30b), opaque coating layers (50a, 50b) respectively formed on the sealing substrates (40a, 40b), and a pair of input/output terminal electrodes (61a, 61b) respectively connected to the electrodes (20a, 20b). By having such a constitution, the state of sealed space and sealing widths of the frame members (30a, 30b) can be checked by visual examination such as direct visual observation or image recognition, and thus a highly reliable piezoelectric component (1) can be obtained. In addition, a mark can be made on the coating layers (50a, 50b).
Abstract:
A large-format display is attached to a rear side face of a digital multifunction peripheral in an integrated manner, with a first display screen facing outside and a second display screen facing inside. A device control portion of the digital multifunction peripheral is connected to an external server apparatus via an external network. In this digital multifunction peripheral, various pieces of information managed by the server apparatus are displayed on the first display screen and the second display screen of the large-format display, and when switching the display of the display screens sequentially with time, the display of the first display screen and the display of the second display screen are switched with a time lag.
Abstract:
In one embodiment of the present invention, a display apparatus that has a display screen visible from a back face or a side face of an image forming apparatus is disposed on at least one side face of an image forming apparatus case.
Abstract:
It is an object of the present invention to provide a vehicle automatic operation control device that can perform automatic operation of a vehicle while the actual acceleration favorably tracks the target acceleration. The device comprises a target required torque calculating part (31) which determines the target required torque from the respective calculated values of a feed-forward calculated value and a feedback calculated value, and an automatic operation control part D which causes the vehicle to operate automatically on the basis of the determined target required torque, and which performs slip suppression control that suppresses slip of the wheels when any of the wheels of the vehicle slip. In cases where slip suppression control is performed by the automatic operation control part (D), the target required torque calculating part (31) holds the feedback calculated value based on the deviation between the target acceleration and actual acceleration, and determines the target required torque from the respective calculated values of the held feedback calculated value and feed-forward calculated value.
Abstract:
A method of controlling an internal combustion engine during a start up phase, include cranking the internal combustion engine to initiate the start up phase and controlling an alternator load so as to increase load on the engine during at least a part of the start up phase, thereby to control engine speed flare and/or at least partially to recover energy used to start the internal combustion engine. Even when base ignition timing and/or fueling calibration for starting the engine is modified to improve combustion stability, the alternator load can be controlled to control engine speed flare and/or recover start energy.