Abstract:
Disclosed are detecting apparatus for detecting statuses of an optical disc and methods thereof, which can avoid or reduce erroneous status decisions at the edge of a blank region. The detecting apparatus includes a blank detector, for detecting a blank region of the optical disc to generate a blank detection signal; an edge detector, for detecting a transition of the blank detection signal to generate an edge detection signal; a control circuit, in response to the edge detection signal for outputting control signals; and a defect detector in response to the control signals for detecting defect region of the optical disc to generate a defect decision signal.
Abstract:
A method for calibrating an initial driving signal for driving an optical pick-up head of an optical disk drive is provided. On one embodiment, said optical disk drive is utilized for reading or writing data on an optical disk, the optical disk comprises a plurality of auto power control areas (APC areas) and a plurality of data areas, and the APC areas and the data areas are interleaved in between. First, in the APC areas, an initial driving signal is used to drive the optical pick-up head to emit laserbeam. A detected level of the laserbeam is then obtained. An update initial driving signal is then calibrated according to the detected level and a target level.
Abstract:
An optical storage device and a blank detection method thereof are disclosed. An RF signal is obtained from an optical disc. A various gain amplifier amplifies the RF signal based on a control signal. An analog to digital converter samples the amplified RF signal to obtain a data signal. An auto gain controller updates the control signal based on amplitude of the data signal. A blank detector detects blankness of the data signal based on a threshold. The threshold is provided by a threshold generator based on the control signal. If the amplitude of the data signal does not exceed the threshold, the blank detector sends a hold signal to suspend update of the control signal.
Abstract:
This invention is a rewritable near-field optical medium using a zinc oxide nano-structured thin film as the localized near-field interaction layer. This rewritable near-field optical medium is a multilayered body at least comprising: (a) a substrate of transparent material; (b) a first protective and spacer layer formed on one surface of the substrate, which is made of transparent dielectric material; (c) a zinc oxide nano-structured thin film which is capable of causing localized near-field optical interactions; (d) a second protective and spacer layer formed on the localized near-field optical interaction layer, which is also made of transparent dielectric material; (e) a rewritable recording layer; (f) a third protective and spacer layer formed on the rewritable recording layer, which is also made of transparent dielectric material. Ultrahigh density near-field optical recording can be achieved by the localized near-field optical interactions of the zinc oxide nanostructured thin film that is in the near-field region of the rewritable recording layer.
Abstract:
The invention provides an electronic apparatus. In one embodiment, the electronic apparatus comprises an analog-to-digital converter (ADC) and an enable device. The analog-to-digital converter converts an analog input signal to a digital output signal with a resolution having a plurality of bits. The enable device dynamically adjusts the resolution of the analog-to-digital converter according to an instruction signal.
Abstract:
A device for controlling access to an optical disc includes a control word calculator and a numerically controlled oscillator (NCO). The control word calculator is arranged to calculate a control word corresponding to a radius where the optical disc is accessed. In addition, the NCO is arranged to generate an output frequency according to the control word, wherein the output frequency is utilized for accessing the optical disc. An associated method for controlling access to an optical disc includes: calculating a control word corresponding to a radius where the optical disc is accessed; and generating an output frequency according to the control word, wherein the output frequency is utilized for accessing the optical disc.
Abstract:
The invention discloses an error-correcting apparatus for decoding an input signal by using a Viterbi algorithm to generate a Viterbi-decoded signal, including an erasure unit and a decoder. The erasure unit is configured to generate at least one logic signal according to at least one path metric difference of path metrics in the Viterbi algorithm, and generate erasure information, wherein the erasure information indicates data reliability of at least one location of the Viterbi-decoded signal. The decoder is configured to decode the Viterbi-decoded signal according to the erasure information.
Abstract:
The invention provides an electronic apparatus. In one embodiment, the electronic apparatus comprises an analog-to-digital converter (ADC) and an enable device. The analog-to-digital converter converts an analog input signal to a digital output signal with a resolution having a plurality of bits. The enable device dynamically adjusts the resolution of the analog-to-digital converter according to an instruction signal.
Abstract:
An apparatus for light spot servo signal detection for reading an optical recording medium having a plurality of non-writable areas between writable data areas containing address information. An optical pickup provides a light spot to the non-writable areas of the optical recording medium with a predetermined state according to a control signal, and detects optical reflecting signals from the optical recording medium to generate a detection signal. A signal adjusting module offsets signal levels of the detection signal to an operating range to generate an offset shifted detection signal. An analog to digital converter digitizes the offset shifted detection signal to generate a digital signal. A detection circuit detects the servo detection signal according to the digital signal.
Abstract:
A positioning method and a positioning system based on light intensity are provided. The positioning system comprises a lighting system, a sense feedback device and a positioning module. The lighting system comprises at least three point light sources and sequentially adjusts luminance of these point light sources to light up a target. The sense feedback device is disposed on the target and used to collect light intensity information of the light projected on the target by the lighting system. The positioning module calculates a distance between the target and each of the point light sources based on the light intensity information and calculates a positioning location of the target based on the locations of the point light sources and the distances between the target and the point light sources.