Abstract:
A blurred image having a spatially invariant motion blur resulting from camera motion during image capture is deblurred based on one or more light streaks identified and extracted from the blurred image. A blur kernel for the blurred image is estimated by performing an optimization procedure having a blur kernel constraint based at least in part on the light streak. One or more light streaks can in some embodiments be posed as the blur kernel constraint. A modeled light streak may be defined as a convolution between the blur kernel and a simulated light source, with the optimization procedure being to minimize a distance between the modeled light streak and the corresponding identified light streak from the blurred image.
Abstract:
An image de-blurring system obtains a blurred input image and generates, based on the blurred input image, a blur kernel. The blur kernel is an indication of how the image capture device was moved and/or how the subject captured in the image moved during image capture. Based on the blur kernel and the blurred input image, a de-blurred image is generated. The blur kernel is generated based on the direction of edges identified in the blurred input image and/or based on curves having a high curvature identified in the image (e.g., corners identified in the image).
Abstract:
Systems, methods, and computer-readable storage media for chatter reduction in video object segmentation using a variable bandwidth search region. A variable bandwidth search region generation method may be applied to a uniform search region to generate a variable bandwidth search region that reduces the search range for segmentation methods such as a graph cut method. The method may identify parts of the contour that are moving slowly, and reduce the search region bandwidth in those places to stabilize the segmentation. This method may determine a bandwidth for each of a plurality of local windows of an image according to an estimate of how much an object in the image has moved from a previous image. The method may blend the bandwidths for the plurality of local windows to generate a blended map. The method may then generate a variable bandwidth search region for an object according to the blended map.
Abstract:
Text region detection techniques and systems for digital images using image tag filtering are described. These techniques and systems support numerous advantages over conventional techniques through use of image tags to filter text region candidates. A computing device, for instance, may first generate text region candidates through use of a variety of different techniques, such as text line detection. The computing device then assigns image tags to the text region candidates. The assigned image tags are then used by the computing device to filter the text region candidates based on whether image tags assigned to respective candidates are indicative of text.
Abstract:
The present disclosure is directed toward systems and method for warping a panoramic image to fit a predetermined shape using content-unaware warping techniques. For example, systems and methods described herein involve generating a mesh grid for a panoramic image with skewed edges by sampling boundary points around edges of the panoramic image and interpolated interior vertex points from the boundary points. Further, systems and methods described herein involve warping the mesh grid and underlying pixels of the panoramic image to fit a predetermined boundary. Further, systems and methods described herein involve generating the mesh grid and warping the panoramic image without consideration of content included therein and without overly-warping individual cells of the mesh grid and underlying pixels of the panoramic image.
Abstract:
A computer-implemented method and system are described for deblurring an image. The method may include accessing an image having a first blurred region and a second blurred region, and generating a first blur kernel for the first blurred region and a second blur kernel for the second blurred region. Thereafter, the first blur kernel is positioned with respect to the first blurred region, and the second blur kernel is positioned with respect to the second blurred region based on the position of the first blur kernel. The image is then deblurred by deconvolving the first blurred region with the first blur kernel, and deconvolving the second blurred region with the second blur kernel.
Abstract:
Techniques involving flexible video object boundary tracking are described. One or more curves, such as Bezier curves, are received as drawn by a user on an initial frame of video to define a boundary of an object in the frame. The curves are then mapped to a subsequent or previous frame of the video where the object is included but has a new or changed boundary. A segmentation boundary is determined for the object in the subsequent frame and endpoints of segments of the curves are snapped to the segmentation boundary. Additionally, confidence values are determined for subregions of the frame that include portions of the curves. These confidence values are used to update control points on the curve segments to fit the curve segments to the new or changed boundary of the object in the frame.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed towards automatic selection of regions for blur kernel estimation. In one embodiment, a process divides a blurred image into a regions. From these regions a first region and a second region can be selected based on a number of edge orientations within the selected regions. A first blur kernel can then be estimated based on the first region and a second blur kernel can be estimated for the second region. The first and second blur kernel can then be utilized to respectively deblur a first and second portion of the image to produce a deblurred image. Other embodiments may be described and/or claimed.
Abstract:
Multi-feature image haze removal is described. In one or more implementations, feature maps are extracted from a hazy image of a scene. The feature maps convey information about visual characteristics of the scene captured in the hazy image. Based on the feature maps, portions of light that are not scattered by the atmosphere and are captured to produce the hazy image are computed. Additionally, airlight of the hazy image is ascertained based on at least one of the feature maps. The calculated airlight represents constant light of the scene. Using the computed portions of light and the ascertained airlight, a dehazed image is generated from the hazy image.
Abstract:
A simulated tracking shot is generated from an image sequence in which a foreground feature moves relative to a background during capturing of the image sequence. The background is artificially blurred in the simulated tracking shot in a spatially-invariant manner corresponding to foreground motion relative to the background during a time span of the image sequence. The foreground feature can be substantially unblurred relative to a reference image selected from the image sequence. A system to generate the simulated tracking shot can be configured to derive spatially invariant blur kernels for a background portion by reconstructing or estimating a 3-D space of the captured scene, placing virtual cameras along a foreground trajectory in the 3-D space, and projecting 3-D background points on to the virtual cameras.