摘要:
A modulated reflectance measurement system includes lasers for generating an intensity modulated pump beam and a UV probe beam. The pump and probe beams are focused on a measurement site within a sample. The pump beam periodically excites the measurement site and the modulation is imparted to the probe beam. For one embodiment, the wavelength of the probe beam is selected to correspond to a local maxima of the temperature reflectance coefficient of the sample. For a second embodiment, the probe laser is tuned to either minimize the thermal wave contribution to the probe beam modulation or to equalize the thermal and plasma wave contributions to the probe beam modulation.
摘要:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
摘要:
A modulated reflectance measurement system includes lasers for generating an intensity modulated pump beam and a UV probe beam. The pump and probe beams are focused on a measurement site within a sample. The pump beam periodically excites the measurement site and the modulation is imparted to the probe beam. For one embodiment, the wavelength of the probe beam is selected to correspond to a local maxima of the temperature reflectance coefficient of the sample. For a second embodiment, the probe laser is tuned to either minimize the thermal wave contribution to the probe beam modulation or to equalize the thermal and plasma wave contributions to the probe beam modulation.
摘要:
A method for simultaneously monitoring ion implantation dose, damage and/or dopant depth profiles in ion-implanted semiconductors includes a calibration step where the photo-modulated reflectance of a known damage profile is identified in I-Q space. In a following measurement step, the photo-modulated reflectance of a subject is empirically measured to obtain in-phase and quadrature values. The in-phase and quadrature values are then compared, in I-Q space, to the known damage profile to characterize the damage profile of the subject.
摘要:
There is provided a metrologic methodology and instrument, useful for a high-spatial-resolution dynamic diagnostic metrology and instrument, which can provide simultaneous measurements of laser-induced frequency-domain infrared photothermal radiometry (FD-PTR) and alternating-current (ac) modulated luminescence (FD-LM) signals from defects and caries in teeth intraorally. The combination of the luminescence and radiometric frequency scan techniques for inspection of defects and caries in teeth involves irradiating the tooth with a modulated (direct-current (dc) to 100 kHz) excitation source (laser) emitting in the near-ultraviolet, visible, or near-infrared spectral range, generating blackbody Planck-radiation (infrared radiometry) and ac luminescence, and comparing the obtained (amplitude and phase) luminescence and radiometric signals to those obtained from a well characterized sample (reference) to provide the clinician with numerical information on the status of a tooth. The method and device is used to scan teeth intraorally to detect caries and classify caries or the integrity of the enamel or cementum surface, classify the health and integrity of the enamel at the base of occlusal fissures, classify the health and integrity of enamel or cementum surface of the tooth and defects around the margins of restorations, locate the presence of cracks on the enamel or cementum surface, and locate and characterize cracks in dentin on prepared teeth.
摘要:
A method and apparatus for evaluating a semiconductor wafer. A combination of a photothermal modulated reflectance method and system with a photothermal IR radiometry system and method is utilized to provide information which can be used to determine properties of semiconductor wafers being evaluated. The system and method can provide for utilizing a common probe source and a common intensity modulated energy source. The system and method further provide an infrared detector for monitoring changes in infrared radiation emitted from a sample, and photodetector for monitoring changes in beam reflected from the sample.
摘要:
The capabilities of the Modulated Optical Reflectance (MOR) technology in dopant metrology applications are combined with the sensitivity of the PhotoReflectance (PR) method in the present system to provide stress and other measurements in semiconductor samples. Such combination enhances the measurement performance of MOR based systems in ion implant applications (implantation dose and energy) and expands system capabilities into a new area of structural parameters measurements, for example, strain in silicon wafers.
摘要:
Samples subject to ion implantation are measured using a modulated optical reflectance system and the results of the measurements are compared to specification ranges for acceptable samples and a plurality of parametric ranges. Each parametric range is associated with a different known type of implantation fault. Measurement results outside of the specification range may be characterized by fault type by comparing the measurement results to a plurality of parametric ranges. In this way, a fault type may be quickly identified and the corresponding source of the fault may be corrected.