摘要:
The present invention provides improvements to an implant, system and method using passive electrical conductors which route electrical current to either external or implanted electrical devices, to multiple target body tissues and to selective target body tissues. The passive electrical conductor extends from subcutaneous tissue located below either a surface cathodic electrode or a surface anodic electrode a) to a target tissue to route electrical signals from the target body tissue to devices external to the body; b) to implanted electrical devices to deliver electrical current to such devices, or c) to multiple target body tissues or to selective target body tissues to stimulate the target body tissues. The conductor has specialized ends for achieving such purposes.
摘要:
An in-vivo imaging device including a camera may include a frame storage device. Systems and methods which vary the frame capture rate of the camera and/or frame display rate of the display unit of in-vivo camera systems are discussed. The capture rate is varied based on physical measurements related to the motion of the camera. Alternatively, the frame capture rate is varied based on comparative image processing of a plurality of frames. The frame display rate of the system is varied based on comparative image processing of a multiplicity of frames. Both the frame capture and the frame display rates of such systems can be varied concurrently.
摘要:
A device, system and method for selectively activating or altering the operational mode of an autonomous in vivo device in response to in vivo conditions. They system may include an in vivo sensing device with a condition tester, and a controller. The in vivo sensing device may be in communications with an external receiver. The condition tester may include at least one layer of a dissolvable material coated on at least a portion of the autonomous device. The layer may dissolve when exposed to a specific material of a specified site along the GI tract. A sensor may be exposed when the layer dissolves or a switch autonomously activated with the layer dissolves.
摘要:
An in-vivo device may include an optical system, and a method for viewing in-vivo sites. A dome or cover may cover an end of the device, protecting optical elements such as illumination devices or imagers, which may be behind the dome. The dome may be forward projecting and may have a convex shape. The field of view of the imager may be for example forward looking. Illumination element(s) and a receiving unit or imager may be disposed behind a single optical window, which for example may enable obtaining of images free of backscatter and stray light. The convex shape of the dome may be defined such that it may have a shape having an isolated area. At least one illumination element and at least one receiving unit may be geometrically positioned (for example in the isolated area) such that rays from the illumination elements, some of which are internally reflected from the internal and/or external surface of the optical window, will not be incident on the receiving unit.
摘要:
A device, system and method may enable the obtaining of in vivo images from within body lumens or cavities, such as images the gastrointestinal (GI) tract, where the data such as image data is typically transmitted or otherwise sent to a receiving system in compressed or diluted form. The image may be reconstructed and for example displayed to a user.
摘要:
A system and method may determine the orientation of an in-vivo imaging device relative to the earth's gravitation field. Some embodiments may enable indication of specific locations where other methods provide non-satisfactory imaging coverage. The system may include an in-vivo imaging system with a container or shell containing an orientation object. The container may be placed in at least one optical dome or optical field of an in-vivo imaging device, such as an autonomous capsule. The location of the orientation object's image on the in-vivo imaging device imager, as well as size of the image, may be determined as functions of the location of the orientation object inside the container, for each image acquired.
摘要:
A device and system enables obtaining data such as in vivo images from within body lumens or cavities, such as images of the gastrointestinal (GI) tract. A device may include an imaging system and a radio frequency (RF) transmitter for transmitting signals from an imaging device to a receiving system. The signal strength of the transmitter may be varied or changed to account for, for example, the amount of signal attenuation resulting from body tissues.
摘要:
An imaging device having an in vivo CMOS image sensor, at least one illumination source and a controller. The controller controls the illumination source to illuminate for a first period and to be shut off for a subsequent period.
摘要:
In some embodiments, an apparatus includes a substrate, a power source, a connector, electrical circuitry, and an electrode assembly. The substrate has a first surface and a second surface different than the first surface. The power source has a positive terminal and a negative terminal Each of the positive terminal and the negative terminal are coupled to the substrate. The power source is configured to provide power to an external stimulator coupled to the apparatus. The connector is disposed proximate to the first surface of the substrate and is electrically coupled to at least one of the positive terminal and the negative terminal of the power source. The connector is configured to electrically couple the external stimulator to the power source. The electrical circuitry is coupled to the substrate. The electrical circuitry is configured to electrically couple the connector to at least one of the positive terminal and the negative terminal of the power source. At least one of the connector or the electrical circuitry is configured to prevent a short circuit of the electrical circuit. The electrode assembly is coupled to the second surface of the substrate. At least one electrode of the electrode assembly is configured to contact bodily tissue and to facilitate transmission of an electrical current through the bodily tissue.
摘要:
An in-vivo device, system, and method are described where an in-vivo device may transmit an image stream to an external receiving device. Reducing the size of the image data necessary for transmission may conserve energy consumed by the in-vivo device during transmission. An image data comparator unit incorporated within the in-vivo device may compare a captured image to a previously transmitted image and transmit, for example, only captured images that are substantially dissimilar to a previously captured image.