Abstract:
Disclosed herein, among other things, are methods and apparatus related to radio frequency (RF) ablation catheters. The present subject matter provides an ablation catheter system including an ablation catheter, multiple RF electrodes positioned along a distal end of a catheter, an electrical stimulation generator, and a control circuit electrically connected to the stimulation generator. According to various embodiments, the RF electrodes are each connected to the stimulation generator using a switch, and the control circuit is configured to distribute RF power from the stimulation generator to the RF electrodes using the switches to provide ablation therapy.
Abstract:
A cardiac valve with a support frame having a first end member and a second end member opposing the first end member in a substantially fixed distance relationship, and a cover extending over the support frame to allow for unidirectional flow of a liquid through the valve.
Abstract:
Systems and methods for monitoring and performing tissue modulation are disclosed. An example system may include an elongate shaft having a distal end region and a proximal end and having at least one modulation element and one sensing electrode disposed adjacent to the distal end region. The sensing electrode may be used to determine and monitor changes in tissue adjacent to the modulation element.
Abstract:
An elongated flexible medical device is inserted into a patient's body via a natural orifice, and advanced through the natural orifice to a location proximate innervated tissue that influences renal sympathetic nerve activity. The medical device can be advanced into a body organ and to a location within the organ proximate the innervated tissue. The organ may comprise an organ of the gastrointestinal tract or urinary tract. The medical device may be advanced through and beyond an access hole in a wall of the organ, and situated at a location proximate the innervated tissue. One or both of imaging and ablation energy is delivered from a distal end of the medical device to the innervated tissue. Innervated renal tissue can be ablated using various forms of energy, including RF energy, ultrasound energy, optical energy, and thermal energy.
Abstract:
Systems for nerve and tissue modulation are disclosed. An illustrative system may include an intravascular nerve modulation system including a catheter shaft, a first flexible mount, and a cylindrical ablation transducer. The ablation transducer may be affixed to the catheter shaft through the flexible mount to allow an infusion fluid to pass through a lumen of the transducer. Another illustrative system may include an intravascular nerve modulation system including an expandable basket for centering an ablation tra7nsducer within a lumen.
Abstract:
A catheter is configured to access a renal artery. A lumen of the catheter's shaft is dimensioned to receive a flexible actuation member which extends between the shaft's proximal and distal ends. The actuation member is moveable within the lumen and subject to elastic deformation, friction, and/or whip along its length. A flexible support member is coupled to a distal end of the actuation member and extendible beyond a distal tip of the shaft. An RF ablation electrode at a distal end of the support member is configured to ablated perivascular renal nerve tissue. A position converter at the distal end of the shaft is configured to convert movement of the actuation member into one or both of controlled rotational and axial movement of the support member and electrode to one of a multiplicity of stable circumferential positions substantially free of elastic deformation, friction, and/or whip impacting actuation member movement.
Abstract:
A thrombectomy system may include an elongate shaft that defines a high pressure lumen and a low pressure lumen. The high pressure lumen may terminate near an end of the low pressure lumen. An expandable capture basket may be disposed near the end of the low pressure lumen. A thrombectomy apparatus may include an elongate shaft, an evacuation lumen extending within the elongate shaft and a high pressure lumen extending within the elongate shaft. A capture apparatus may be disposed within a wire lumen that extends within the elongate shaft such that the capture apparatus extends distally from the wire lumen.
Abstract:
Disclosed herein, among other things, are methods and apparatus related to radio frequency (RF) ablation catheters. The present subject matter provides an ablation catheter system including an ablation catheter, multiple RF electrodes positioned along a distal end of a catheter, an electrical stimulation generator, and a control circuit electrically connected to the stimulation generator. According to various embodiments, the RF electrodes are each connected to the stimulation generator using a switch, and the control circuit is configured to distribute RF power from the stimulation generator to the RF electrodes using the switches to provide ablation therapy.
Abstract:
Methods of installing a vascular closure device, the vascular closure device adapted for sealing an opening in biological tissue and comprising an anchor, a compressible plug, a cinch and a suture, the method comprising the steps of providing an insertion sheath, inserting the insertion sheath into the opening in the biological tissue, providing a device sheath having the vascular closure device preloaded therein with a proximal portion of the suture attached to the device sheath, subsequent to the step of inserting the insertion sheath, inserting the device sheath into the insertion sheath, and retracting the insertion sheath and device sheath simultaneously, wherein during the retraction, the insertion sheath and the device sheath are fixed to one another and devices adapted to the methods.