摘要:
The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
摘要:
The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
摘要:
The present invention relates to antibodies or fragments thereof that specifically bind FcγRIIB, particularly human FcγRIIB, with greater affinity than the antibodies or fragments thereof bind FcγRIIA, particularly human FcγRIIA. The present invention also provides the use of an anti-FcγRIIB antibody or an antigen-binding fragment thereof, as a single agent therapy for the treatment, prevention, management, or amelioration of a cancer, preferably a B-cell malignancy, particularly, B-cell chronic lymphocytic leukemia or non-Hodgkin's lymphoma, an autoimmune disorder, an inflammatory disorder, an IgE-mediated allergic disorder, or one or more symptoms thereof. The invention provides methods of enhancing the therapeutic effect of therapeutic antibodies by administering the antibodies of the invention to enhance the effector function of the therapeutic antibodies. The invention also provides methods of enhancing efficacy of a vaccine composition by administering the antibodies of the invention.
摘要:
This invention relates to chimeric and humanized antibodies that specifically bind the BCR complex, and particularly chimeric and humanized antibodies to the BCR complex. The invention also relates to methods of using the antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
摘要:
Diabody molecules and uses thereof in the treatment of a variety of diseases and disorders, including immunological disorders, infectious disease, intoxication and cancers are disclosed. The diabody molecules comprise two polypeptide chains that associate to form at least two epitope binding sites, which may recognize the same or different epitopes on the same or differing antigens. Additionally, the antigens may be from the same or different molecules. The individual polypeptide chains of the diabody molecule may be covalently bound through non-peptide bond covalent bonds, such as disulfide bonding of cysteine residues located within each polypeptide chain. The diabody molecules may further comprise an Fc region, which allows antibody-like functionality to be engineered into the molecule.
摘要:
The present invention relates to molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds FcγRIIIA and/or FcγRIIA with a greater affinity, relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcγR is desired, e.g., cancer, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
摘要:
The present invention relates to antibodies that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.
摘要:
The present invention relates to compositions comprising humanized antibodies or fragments thereof that immunospecifically bind to one or more antigens of a flavivirus, particularly of West Nile Virus (WNV) and methods for preventing, treating or ameliorating symptoms associated with a flavivirus, particularly of West Nile Virus (WNV) infection utilizing said compositions. In particular, the present invention relates to methods for preventing, treating or ameliorating symptoms associated with WNV infection, said methods comprising administering to a human subject an effective amount of one or more humanized antibodies or fragments thereof that immunospecifically bind to a WNV antigen. The present invention also relates to detectable or diagnostic compositions comprising humanized antibodies or fragments thereof that immunospecifically bind to a WNV antigen and methods for detecting or diagnosing WNV infection utilizing said compositions.
摘要:
The present invention is directed to the production and use of monoclonal antibodies, or antigen binding fragments thereof, that specifically bind the T cell antigen receptor (TCR) and their use for immunomodulation. In preferred embodiments, the antibody or antigen binding fragment of the invention specifically binds the constant region of the α chain of the TCR, or otherwise specifically binds the α chain regardless of TCR clonal origin (i.e., is pan specific for TCR). The antibodies of the invention may be used, for example, in immunosuppressive therapies for transplant maintenance and the treatment of autoimmune diseases, and/or as targeting molecules for use in the treatment of T-cell malignancies.