Abstract:
A leakage current detection interrupter (LCDI) with self-testing function, which includes: a leakage current detection unit, including multiple current-carrying wires and at least one leakage current detection wire for detecting a leakage current of the current-carrying wires; a phase protection unit, coupled to at least one current-carrying wire on the input side of the multiple current-carrying wires, and coupled to at least one current-carrying wire on the output side of the multiple current-carrying wires via the leakage current detection unit, to form a current loop; wherein the phase protection unit can generate a control signal to disconnect the electrical coupling between the LCDI and the power source. By using a temperature controlled module, the leakage current detection unit and the phase protection unit, an LCDI with self-testing function is achieved. When there is a leakage current in the current-carrying wires, or the current-carrying wire is open, or the temperature of the electrical appliance exceeds a predefined range, or the leakage current detection wire is broken, the LCDI can disconnect its electrical coupling with the power source, ensuring the safety of the appliance and enhancing the quality of the electrical grid.
Abstract:
A safety shield assembly for a power receptacle includes a frame having openings corresponding to socket holes of the power receptacle, and a sliding block assembly and a resilient member disposed in the frame. The sliding block assembly include a sliding block body with two inclined surfaces, at least one of which having a slot to receive a wear-resistant block. In the initial state, the resilient member urges the sliding block assembly to cover the openings. The frame further includes a position limiting member and a balancing support member. When an inserted object pushes on only one of the two inclined surfaces, the position limiting member limits a sliding motion of the sliding block assembly; when two inserted objects simultaneously push on the two inclined surfaces, the sliding block assembly is balanced on the balancing support member and slides along the frame to expose the openings.
Abstract:
A leakage current detection and interruption (LCDI) device includes a switch module to control electrical connection of first and second power supply lines between input and output ends, a leakage current detection module including first and second leakage current detection lines respectively covering the first and second power supply lines to detect leakage currents thereon, a detection monitoring module coupled to the leakage current detection module and the first and second power supply lines to generate an open circuit detection signal in response to an open circuit condition in the first or second leakage current detection line, and a test module including a normally closed test switch coupled to the first or second leakage current detection line, wherein when the test switch is manually operated to open, the switch module disconnects the first and second power supply lines between the input and output ends.
Abstract:
A leakage current protection device (such as a power plug) for an electrical appliance includes a shell and a trip assembly inside the shell. The shell includes an upper cover and a base cover joined together, and either the upper cover or the base cover includes a first cover and a removable second cover. The removable second cover spatially corresponds to a tail portion of the trip assembly; when it is removed, the tail portion is exposed to allow a power cord to be connected to the leakage current protection device. By using a removable second cover, the cord can be conveniently assembled with the device when the device is installed on the electrical appliance, allowing the to be shipped without the cord. This can reduce the packed size of the device for easier shipping and storage, as well as lowering cost. It also makes the device more versatile.
Abstract:
A power cord with leakage current detection and interruption (LCDI) function includes at least two power supply lines, at least two insulating layers respectively covering the at lease two power supply lines, at least two leakage current detection lines respectively disposed around the at least two insulating layers, including a first leakage current detection line and a second leakage current detection line, at least one connector line, electrically coupled to the first leakage current detection line and/or the second leakage current detection line, and at least one insulating structure, covering at least one of the at least two leakage current detection lines, to electrically insulate the first and second leakage current detection lines from each other.
Abstract:
An intelligent leakage current detection and interruption device for a power cord, including a switch module for controlling electrical connection of two power lines between input and output ends; a leakage current detection module, including two leakage current detection lines and a signal feedback line, one end of the parallelly coupled two leakage current detection lines being coupled via the signal feedback line to a point between the two power lines, for respectively detecting a leakage current on the two power lines; a detection monitoring module, coupled to the leakage current detection module, for detecting open circuit conditions in the two leakage current detection lines; and a drive module, coupled to the switch module, the leakage current detection module and the detection monitoring module, for driving the switch module to disconnect power to the output end in response to any detected leakage current or open circuit condition.
Abstract:
A leakage current detection and protection device coupled between input and output ends of power lines, and includes first and second switching modules, a leakage current detection module, a self-test module, and first and second drive modules. When the leakage current detection module detects a leakage current on the power lines, the second drive module controls the second switching module to disconnect power to the output end. When the self-test module detects a fault in the leakage current detection module, the first drive module controls the first switching module to disconnect the power to the output ends. The first switching module is coupled between the input end and a point where the leakage current detection module, the self-test module, and the first and second drive modules are coupled, so that these modules are de-powered when the first switching module disconnects the electrical connection to output ends.
Abstract:
A leakage current detection and protection device, and power connector and electrical appliance employing the same. The device includes: a leakage current detection module which detects a leakage current on the power lines to generate a leakage fault signal; a self-test module which periodically generates a simulated leakage current and outputs a self-test fault signal when the leakage current detection module is faulty; a trip module, including a switch coupled between the input and output ends of the power lines, and a first trip coil which drives the switch; a drive module which drives the trip module to disconnect the electrical connection between the input and output ends in response to the leakage fault signal and/or the self-test fault signal; and a trip function detection module which generates a trip coil fault signal in response to detecting an open circuit in the first trip coil to disconnect the electrical connection.
Abstract:
A relay-type leakage current protection device includes a switch circuit, a relay circuit, a leakage current detection circuit, a self-test circuit, and a drive circuit. The switch circuit controls electrical connection between input and output ends of the power supply. The relay circuit is coupled to the input end and controls the open/close state of the switch circuit. The leakage current detection circuit detects a leakage current on the power supply lines. The self-test circuit is coupled to the power supply lines and the leakage current detection circuit, to generate a self-test pulse signal which simulates the leakage current and to detect a fault condition in the leakage current detection circuit. The drive circuit drives the relay circuit in response to receiving a leakage current signal from the leakage current detection circuit or a fault signal from the self-test circuit.
Abstract:
A safety shield assembly for a power receptacle and a power receptacle incorporating the same. The assembly includes a frame, and a sliding block and a resilient member disposed in the frame. The frame has multiple openings corresponding to multiple socket holes of the power receptacle, a position limiting member, and a balancing support member. The sliding block has a sliding block base, two protection ramps disposed in the base and spaced apart, and two metal reinforcement members joined to and formed integrally with the two protection ramps to cover their inclined surfaces. When a power plug is inserted into the socket holes, two prongs of the plug push against the reinforcement members on the protection ramps and the sliding block slides away. When an object is inserted into only one socket hole, the balancing support member and position limiting member cooperate to prevent the sliding block from sliding.