Abstract:
A method is provided in one example embodiment and includes receiving at a network element a packet associated with a flow and determining whether a flow cache of the network element includes an entry for the flow indicating a classification for the flow. The method further includes, if the network element flow cache does not include an entry for the flow, punting the packet over a default path to a classifying service function, in which the classifying service function classifies the flow and determines a control plane service function for handling the flow, and receiving from the classifying service function a service path identifier (“SPI”) of a service path leading to the determined control plane service function. The flow is subsequently offloaded from the classifying service function to the network element.
Abstract:
An example method is provided in one example embodiment and includes receiving, by a user equipment device, a list including at least one location identifier associated with an area for location reporting and an area identifier identifying the area for location reporting. The method further includes receiving a location identifier broadcast by a wireless network element, and determining whether the broadcast location identifier matches the at least one location identifier associated with the area for location reporting. The method further includes sending a location reporting message by the user equipment device to a first network node when it is determined that the broadcast location identifier matches the at least one location identifier associated with the area for location reporting. The location reporting message is indicative of the user equipment device either entering or exiting the area for location reporting.
Abstract:
Techniques are described herein for network slice support of respective transport protocols. In one example, a session management function obtains, from a user equipment, a request for a network slice identifier in a network that includes a plurality of network slices each configured to support a respective transport protocol. In response to the request, the session management function identifies a first transport protocol of the respective transport protocols by which the user equipment is to communicate. Based on the first transport protocol, the session management function identifies a first network slice of the plurality of network slices by which the user equipment is to communicate. The first network slice is configured to support the first transport protocol. The session management function provides the network slice identifier to the user equipment. The network slice identifier corresponds to the first network slice.
Abstract:
A solution for selecting an optimal user Plane entity (with Control and User Plane Separation (CUPS)) per UE during seamless roaming. In one embodiment, a method is provide that is performed by a control plane entity in a mobile core network that supports inter public land mobile network (PLMN) roaming among two or more PLMNs. The method includes obtaining a create session request from an entity in a second PLMN to which a user equipment has roamed from a first PLMN; selecting a particular user plane entity among a plurality of user plane entities based on one or more user equipment related parameters; and establishing a session with the particular user plane entity to serve user plane traffic in the mobile core network for the user equipment.
Abstract:
In one example, an Access Point (AP) configures a first mapping of a first cellular network connection to a first local access network group, and further configures a second mapping of a second cellular network connection to a second local access network group. The AP determines whether a user device is authorized to use the first cellular network connection or the second cellular network connection. If the user device is authorized to use the first cellular network connection, the AP associates, for the user device, a first user device identifier with the first local access network group. If the user device is authorized to use the second cellular network connection, the AP associates, for the user device, a second user device identifier with the second local access network group.
Abstract:
A method enables communication between Session Management Function (SMF) and User Plane Function (UPF) instances which are separately deployed behind Network Address Translation (NAT) services. The method includes configuring an SMF or a UPF to initiate an association with a corresponding UPF or SMF. The SMF registers first information with a Network Repository Function (NRF) enabling the remote UPF to communicate with the SMF through a NAT service. The method further includes obtaining second information from the NRF enabling the SMF to communicate with the remote UPF through the NAT service. The method also includes sending an association request to the remote UPF based on the second information and receiving an association response from the remote UPF through the NAT service.
Abstract:
A network function (NF) entity in a communication network receives User Plane Function (UPF) registration information for a plurality of UPFs, the registration information including a respective network attribute for each UPF. The NF entity associates each UPF with a corresponding network based on the respective network attribute, and map one or more User Equipment (UE) to the corresponding network based on a security policy to create a UE-to-network table. The NF further receives a request to establish a session for a subsequent UE, the request including a subsequent UE identifier, and determine an access permission for the subsequent UE to access the corresponding network based on the subsequent UE identifier and the UE-to-network table. The NF selects one UPF from the plurality of UPF to service the session for the subsequent UE based on the access permission, and an association between the one UPF and the corresponding network.
Abstract:
Presented herein are techniques to facilitate dynamic negotiation and compression of Packet Forwarding Control Protocol (PFCP) messages in a mobile networking environment. In one example, a method includes identifying, by a function, a negotiated compression algorithm to utilize for compressing one or more Packet Forwarding Control Protocol (PFCP) messages; determining whether a payload for a particular PFCP message is to be compressed based on at least one of system resources of the function and a size of the payload; based on determining that the payload is to be compressed, compressing the payload utilizing the negotiated compression algorithm to generate a compressed PFCP message; and setting a compression indication in a header of the compressed PFCP message.
Abstract:
Techniques are described herein for network slice support of respective transport protocols. In one example, a session management function obtains, from a user equipment, a request for a network slice identifier in a network that includes a plurality of network slices each configured to support a respective transport protocol. In response to the request, the session management function identifies a first transport protocol of the respective transport protocols by which the user equipment is to communicate. Based on the first transport protocol, the session management function identifies a first network slice of the plurality of network slices by which the user equipment is to communicate. The first network slice is configured to support the first transport protocol. The session management function provides the network slice identifier to the user equipment. The network slice identifier corresponds to the first network slice.
Abstract:
In one example, an indication that a user equipment participating in a Packet Data Network (PDN) session hosted by a Serving Gateway (SGW) and a PDN Gateway (PGW) is transitioning from a first Mobility Management Entity (MME) to a second MME is obtained. An indication that the SGW is co-located with the PGW and an identification of the SGW are obtained. Based on the indication that the SGW is co-located with the PGW and the identification of the SGW, it is determined that the SGW is reachable from the second MME. In response to determining that the SGW is reachable from the second MME, the SGW is selected to host the PDN session after the user equipment transitions from the first MME to the second MME.