Abstract:
A wireless communication device comprises a number of sub-systems and clock generation logic arranged to generate at least one clock signal to be applied to the number of sub-systems. One of the number of sub-systems comprises sampling logic for receiving input data and performing initial sampling on an input data bit using multiple separated phases of a clock period of the at least one clock signal applied to the sampling logic thereby producing multiple phase separated sampled outputs of the input data bit. The sampling logic is configured to perform a number of re-sampling operations on the multiple phase separated sampled outputs at a number of intermediate phases thereby producing multiple phase separated intermediate sampled outputs prior to performing a final sample of the multiple phase separated intermediate sampled outputs at a single phase of the at least one clock signal to produce a sampled input data signal.
Abstract:
Methods and device for transmitting a sequence of transmission bursts in a wireless device. The method includes transmitting a sequence of transmission bursts according to a transmission schedule. The method is characterized by: receiving, at a radio frequency integrated circuit, prior to a transmission of at least one transmission burst of the sequence, information representative of the timing of the transmission of the at least one transmission burst; and generating timing signals, by the radio frequency integrated circuit that implement the transmission schedule. A wireless device includes a base band integrated circuit adapted to determine a transmission schedule of a sequence of transmission bursts. The wireless device is characterized by including a radio frequency integrated circuit that is adapted receive information representative of the timing schedule and to autonomously control a transmission of the sequence of transmission bursts.
Abstract:
A modulation system can switch between two modulation modes. In order to comply with limits on peak power in spectral bands outside the RF operating one the transmitter is required to ramp down to a condition of minimal power. To avoid fixed ramping and trailing bits, the transmitting signal is subjected to FIR filtering. The two FIR filters are primed with a sequence using a parallel input mode before serially entering the information data.
Abstract:
A semiconductor device comprises sampling logic, comprising: input sample path selection logic arranged to enable at least one input sample path; sampler logic arranged to receive and sample an input data signal in a serial data stream in accordance with a phase of the at least one enabled input sample path; and transition detection logic arranged to detect transitions within the received input data signal. The input sample path selection logic is further arranged, upon detection of a transition within the received input data signal, to determine if the phase of the at least one input sample path is a phase having a largest window between logic values; and if it is determined that the phase of the at least one input sample path is not the phase having a largest window between logic values, to enable at least one input sample path comprising a more appropriate phase.
Abstract:
A wireless communication unit comprises a transmitter having a power amplifier and a feedback path operably coupled to the power amplifier. The feedback path comprises a coupler for feeding back a portion of a signal to be transmitted and a detector for detecting a power level of the fed back signal. A controller provides a ramp signal to the power amplifier that controls an amplitude characteristic of the signal to be transmitted. Averaging logic is operably coupled to the detector and arranged to average the detected power level over a first period. Comparison logic is operably coupled to the averaging logic and arranged to compare the average detected power level with a reference value. The controller is operably coupled to the comparison logic and arranged to scale a ramp signal applied to the power amplifier in response to the comparison.
Abstract:
A wireless communication device comprises a frequency generation circuit employing a crystal oscillator operably coupled to a fractional-based synthesiser and a voltage-controlled oscillator. The fractional-based synthesiser utilises a ratio between an integer value and a fractional value to set a radio frequency signal of the voltage-controlled oscillator. An automatic frequency control scaling sub-system is operably coupled to a fractional-based synthesiser and configured to receive and use an AFC word to frequency scale the fractional value in a multiplicative manner to set a radio frequency supported by the fractional-based synthesiser. Preferably, an automatic frequency generation sub-system utilises Absolute Radio Frequency Channel Number and the cyclical nature of the fractional value.In this manner, a saving on hardware and software overheads associated with frequency channel selection for fractional-N type synthesizers can be made.