Abstract:
A glass laminate structure comprising an external glass sheet and an internal glass sheet wherein one or both of the glass sheets comprises SiO2+B2O3+Al2O3≧86.5 mol. %. and R2O—RO—Al2O3
Abstract translation:一种玻璃层压结构,其包括外部玻璃板和内部玻璃板,其中一个或两个所述玻璃板包括SiO 2 + B 2 O 3 + Al 2 O 3≥86.5mol。 %。 和R2O-RO-Al2O3 <约5mol。 %。 示例性玻璃板可以包含约69-80mol。 %SiO 2,约6-12mol。 %Al 2 O 3,约2-10mol。 %B 2 O 3,约0-5mol。 %ZrO 2,Li 2 O,MgO,ZnO和P 2 O 5,约6-15mol。 %Na 2 O,约0-3mol。 %K2O和CaO,以及约0-2mol之间。 %SnO2,提供机械坚固耐用的结构。
Abstract:
Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
Abstract:
Embodiments of this disclosure pertain to a vehicle interior system comprising a base having a base surface; and a glass article coupled to the surface, wherein the glass article comprises a first portion comprising a first elastically deformed surface forming a first concave shape with a first radius of curvature from about 20 mm to about 2000 mm, and a second elastically deformed surface directly opposite the first elastically deformed surface that forms a second convex shape, wherein the second elastically deformed surface has a surface compressive stress that is less than a compressive stress at the first elastically deformed surface, and a second portion adjacent the first portion, wherein the second portion is substantially planar portion or curved.
Abstract:
Disclosed are methods and apparatuses for in situ control of smart or tinted windows. Also disclosed are methods and apparatuses for controlling at least one internal environmental condition for an interior space including at least one window.
Abstract:
Embodiments of a composite structure are provided, the composite structure including: a substrate layer, a conductive layer and an overlayer. The conductive layer is disposed between the overlayer and the substrate layer. The substrate layer may comprise a material that is optically transparent over at least a part of the electromagnetic spectrum from 180 nm to 20 μm. The conductive layer includes a thickness of 10 nm or greater, a resistivity of 10 Ω-cm or less, and is an optically translucent or opaque over at least a part of the electromagnetic spectrum from 180 nm to 20 μm.
Abstract:
In various embodiments of the present disclosure, a fenestration apparatus is provided, comprising: a laminate having a thickness of not greater than 3 mm; a frame, configured perimetrically around a corresponding perimetrical edge of the glass pane; a seal, configured between the frame and the glass pane; and an attachment member configured to the frame, wherein the attachment member is configured to be removably fixable to an existing window wherein the attachment member is configured to define a gap between the frame, the at least one glass pane, and the existing window.
Abstract:
The described embodiments relate generally to asymmetric liquid crystal panels with improved properties and tailored characteristics, including insulated glazing units and liquid crystal windows incorporating such panels. A liquid crystal cell having thin glass is incorporated into an asymmetric thin liquid crystal panel comprising a pane bonded to the first sheet of the liquid crystal cell via an adhesive layer bonding the first sheet to the pane wherein the liquid crystal material is controllable to adjust a transmittance of the liquid crystal panel.
Abstract:
Various embodiments for configuring LC cells, LC panels, and methods of manufacturing LC panels are provided, comprising: assembling a plurality of LC panel component layers to form a curable stack, wherein the stack is configured with the LC cell, a first glass layer, a second glass layer, a first interlayer and a second interlayer, wherein each of the first interlayer and second interlayer are configured to be layers; curing the curable stack to form a liquid crystal panel; and wherein, via the first interlayer and the second interlayer, the LC panel is configured with a uniform transmission.
Abstract:
A hurricane-resistant laminated pane comprises a first sheet of thermally strengthened glass having a thickness in the range of from 2 to 24 mm, a second sheet of untempered glass having a thickness in the range of from 0.3 to 1 mm, and a polymer interlayer adhered between the first sheet and the second sheet. A process for making such a pane and a window comprising such a pane are also disclosed.
Abstract:
Dynamically adjustable display systems for adjusting the position of a flexible display in response to ambient light. The display system includes a flexible display that is capable of reversibly bending along one or more bending axes. The display system further includes an adjustable support on which the flexible display is mounted, the adjustable support being able to selectively bend the flexible display. The display system includes photodetectors for detecting ambient light. The photodetectors may be positioned about a perimeter of the flexible display. A control unit in communication with the adjustable support and the plurality of photodetectors may cause the adjustable support to bend the flexible display in response to ambient light detected at the plurality of photodetectors.