Abstract:
A bioreactor analysis system for incubating and analysis of a bioreactive material. The system comprises at least one bioreactor, preferably controlled environment bioreactors. The bioreactor may be held in a sleeve, and multiple sleeves may form a series that moving bioreactors into various storage and interventional positions. At least one interventional assembly interacts with the bioreactor while in the sleeve, and alternately, additional interventional assemblies may interact with the bioreactor while out of the sleeve. A jacket with an access port may surround the bioreactor, which may include a temperature management system. Alternately, a plurality of bioreactors may be joined to a storage array by the cooperation of intrinsic structures in the bioreactors and array. A control system allows for multiple individualized commands to be directed to any one or many of the bioreactors, and may utilize programs resident in the system or in remote locations far from the system.
Abstract:
Provided are a functionalized, encapsulated fluorescent nanocrystal comprising a liposome having encapsulated therein one or more fluorescent nanocrystals; use of the functionalized, encapsulated fluorescent nanocrystals in detection systems; and a method of producing functionalized, encapsulated fluorescent nanocrystals. A method of using the functionalized encapsulated fluorescent nanocrystals having affinity molecule bound thereto comprises contacting the functionalized encapsulated fluorescent nanocrystals with a sample so that complexes are formed between the functionalized encapsulated fluorescent nanocrystals and substrate for which the affinity molecule has binding specificity, if the substrate is present; exposing the complexes in the detection system to an excitation light source, and detecting a fluorescence peak emitted from the complexes, if present.
Abstract:
A biological tissue regenerative agent and method for preparing the same. The agent comprises the compounds that are usually found sequestered within platelets, along with platelet cytosolic components, and serum. The agent is prepared by preparing two quanta of blood. The first is clotted, the cells discarded and the serum retained. The second quantum undergoes concentration and lysis of the platelets therein, followed by recombination of the lysed platelets and platelet internal products with serum to form the agent. In a preferred embodiment, lysis of platelets is accomplished by providing an effective amount of calcium. The avoidance of a platelet release reaction and the presence of alpha-2 macroglobulin in the serum suppresses active TGF-β in the agent. The agent may be further purified and may be frozen or freeze dried for storage.
Abstract:
A method for screening an individual for a pathological condition comprising a pro-tumor immune response by assaying a clinical sample, obtained from the individual, with a plurality of affinity ligands for detecting and determining an amount of mononuclear cell phenotype. The amount of mononuclear cell phenotype determined in the clinical sample is then compared to a reference value for the mononuclear cell phenotype, wherein a difference in the amount of mononuclear cell phenotype determined from the clinical sample as compared to the reference value comprises an indicator of the presence of a pro-tumor immune response.
Abstract:
Methods are provided for reducing a pro-multiple sclerosis immune response by administering to an individual a composition comprising an affinity ligand which binds to B cell determinant, and which is administered in an amount effective to reduce B cells.
Abstract:
Provided is a cell culture apparatus for culturing cells, and optionally, for performing magnetic separation of cells desired to be cultured. The cell culture apparatus preferably comprises a frame; at least one gas permeable membrane securedly sealed in a leak-proof sealing to a frame and an opposing surface comprising a rigid surface in forming a culture chamber therebetween; and at least one resealable aperture to allow substances to be introduced into, or withdrawn from, the culture chamber.
Abstract:
Provided are a functionalized, encapsulated fluorescent nanocrystal comprising a liposome having encapsulated therein one or more fluorescent nanocrystals; use of the functionalized, encapsulated fluorescent nanocrystals in detection systems; and a method of producing functionalized, encapsulated fluorescent nanocrystals. A method of using the functionalized encapsulated fluorescent nanocrystals having affinity molecule bound thereto comprises contacting the functionalized encapsulated fluorescent nanocrystals with a sample so that complexes are formed between the functionalized encapsulated fluorescent nanocrystals and substrate for which the affinity molecule has binding specificity, if the substrate is present; exposing the complexes in the detection system to an excitation light source, and detecting a fluorescence peak emitted from the complexes, if present.
Abstract:
A magnetic sheet assembly for application to a device adapted for magnetic separation, the magnetic sheet assembly comprising: a magnetic sheet; a permanent, pressure sensitive adhesive; a carrier sheet; and a non-permanent pressure sensitive adhesive. Also provided is a method of mounting and removably adhering the magnetic sheet assembly to a surface of a device for magnetic separation, the method comprising the steps of aligning the magnetic sheet assembly with the surface of the device; and pressing the aligned magnetic sheet assembly in placing its non-permanent adhesive face into adhesive contact with the surface of the device.
Abstract:
Provided are a fluorescent microsphere comprised of a plurality of fluorescent nanocrystals embedded in a polymeric microsphere; a kit prepared from the fluorescent microspheres; and a method of producing the fluorescent microspheres comprising swelling the polymeric microsphere so that into its pores can enter fluorescent nanocrystals, and then unswelling the polymeric micropsheres so that the fluorescent nanocrystals become physically entrapped in the pores of the unswelled polymeric microsphere. Also provided is a method of using the fluorescent microspheres comprising affinity ligand for determining the presence or absence of a predetermined number of analytes in a sample by contacting the sample with the fluorescent microspheres, and detecting the fluorescence signal pattern of excited fluorescent microspheres bound to one or more analytes of the predetermined number of analytes, if present in the sample.
Abstract:
Provided are a fluorescent microsphere comprised of a plurality of fluorescent nanocrystals embedded in a polymeric microsphere; a kit prepared from the fluorescent microspheres; and a method of producing the fluorescent microspheres comprising swelling the polymeric microsphere so that into its pores can enter fluorescent nanocrystals, and then unswelling the polymeric micropsheres so that the fluorescent nanocrystals become physically entrapped in the pores of the unswelled polymeric microsphere. Also provided is a method of using the fluorescent microspheres comprising affinity ligand for determining the presence or absence of a predetermined number of analytes in a sample by contacting the sample with the fluorescent microspheres, and detecting the fluorescence signal pattern of excited fluorescent microspheres bound to one or more analytes of the predetermined number of analytes, if present in the sample.