Abstract:
A method for operating a inverter-based resource connected to a power grid includes receiving one or more voltage feedback signals created by at least one component of the inverter-based resource, wherein distortion components of the one or more voltage feedback signals are more sensitive to voltage distortion created by the inverter-based resource than by external sources of voltage distortion. Further, the method includes extracting a distortion component of the one or more feedback signals having a certain phase sequence and frequency. Moreover, the method includes determining a voltage command for the power converter as a function of, at least, the distortion component. Thus, the method includes controlling the power converter based on the voltage command such that the voltage distortion created by the at least one component of the inverter-based resource is reduced in a manner that is relatively insensitive to voltage distortion created by sources external to the inverter-based resource.
Abstract:
Systems and methods for managing or controlling resonance in wind turbine power systems are provided. In particular, a method for controlling a power system that includes a central master controller and one or more wind turbines electrically connected to a power grid through a point of interconnection can be provided, where each wind turbine includes a voltage regulator. The method can include receiving, by the controller, a signal from a sensor associated with wind turbines and determining, which wind turbines are operating in conditions indicative of a resonance condition in the wind turbine electrical power system based, at least in part, on the sensor signals. The method can also include generating one or more control signals based, at least in part, on a power requirement at the point of intersection and controlling an operational state of each of the voltage regulators based on the control signals.
Abstract:
A method for maintaining sufficient reactive current margin in a power system connected to a power grid includes receiving, via a power limiter system, a reactive current command and an upper reactive current limit for the power system. The method also includes determining, via the power limiter system, a reactive current margin signal as a function of the reactive current command and the upper reactive current limit. Further, the method includes generating, via the power limiter system, a power command signal based on the reactive current margin signal. Moreover, the method includes controlling, via a system controller, operation of the power system based at least partially on the power command signal.
Abstract:
Systems and methods for controlling a power converter in a wind turbine system are provided. The wind turbine system can include a generator and a power converter. The power converter can include a plurality of switching devices and a current damping module. A method can include determining, by a control device, a flux magnitude of an air-gap between a rotor and a stator in the generator. The method can further include determining, by the control device, an orientation adjustment reference signal for the current damping module based at least in part on the flux magnitude. The method can further include controlling, by the control device, the power converter based at least in part on the orientation adjustment reference signal.
Abstract:
The present disclosure is directed to a system and method for stabilizing sub-synchronous interaction (SSI) of a wind turbine generator connected to a power grid. More specifically, the method includes measuring an alternating-current (a-c) quantity of the power grid. Another step includes converting the a-c quantity to a d-q quantity and providing the d-q quantity to a d-q control loop within the controller. Another step includes altering, with a symmetric control component, a transfer function of the d-q control loop. The method also includes generating at least one d-q reference signal for the wind turbine generator based on the altered transfer function so as to achieve symmetric control of the generator. A further step includes generating a control signal for the generator based, at least in part, on the at least one d-q reference signal. The method also includes operating the generator based on the control signal.
Abstract:
The present disclosure is directed to a system and method for controlling an electrical power system connected to a power grid. The method includes determining, via a negative sequence regulator programmed in a controller of the electrical power system, a negative sequence component of at least one electrical condition of the electrical power system. Further, the method includes determining a desired current response based on the negative sequence component of the at least one electrical condition of the electrical power system. Thus, the method also includes determining a control command for the power converter as a function of the desired current response so as to achieve a desired relationship between a voltage condition in the power grid and the negative sequence component of the electrical condition of the electrical power system.
Abstract:
The present disclosure is directed to a system and method for stabilizing disconnection of one or more wind turbines in a wind farm connected to a power grid during one or more grid contingency events. The method includes determining, via one or more processors, a phase-locked loop error signal for each of the wind turbines based on sensor signals from the plurality of wind turbines. The method also includes comparing the phase-locked loop error signal of each wind turbine to at least one predetermined threshold for a predetermined time period. If the phase-locked loop error signal for one or more of the wind turbines comprises a positive value that exceeds the predetermined threshold for the predetermined time period, then the method includes generating a trip signal for the one or more of the wind turbines based on the phase-locked loop error signal, the positive value being indicative of system instability, wherein the trip signal is configured to disconnect the one or more wind turbines from the power grid.
Abstract:
In one aspect, a method for controlling a power generation system may generally include determining a phase angle error associated with the power generation system, determining a scaling factor based on the phase angle error, generating a current command for controlling the operation of a power convertor of the power generation system and applying the scaling factor to the current command such that the current command is reduced when the phase angle error exceeds a predetermined error threshold.
Abstract:
A hybrid HVDC converter system includes a DC bus, at least one capacitor commutated converter (CCC) and at least one self-commutated converter (SCC) coupled in series through the DC bus. The CCC induces a first voltage on the DC buses, the SCC induces a second voltage on the DC bus, the first voltage and the second voltage are summed to define a total DC voltage. The method includes at least one of regulating the total DC voltage induced on the DC buses including regulating the first DC voltage through the CCC and regulating the second DC voltage through the SCC substantially simultaneously, regulating the total DC voltage induced on the DC bus including regulating the second DC voltage through the SCC, and regulating the total DC voltage induced on the DC bus including regulating the first DC voltage through the CCC.
Abstract:
In one aspect, a method for controlling the operation of a power generation system configured to supply power to an electrical grid may generally include monitoring a rotor speed of a generator of the power generation system and determining a gain scaling factor based on the rotor speed, wherein the gain scaling factor increases with decreases in the rotor speed across a range of rotor speeds. In addition, the method may include adjusting a regulator gain to be applied within a current regulator of the power generation system based on the gain scaling factor and applying the adjusted regulator gain within the current regulator in order to generate a voltage command signal for controlling a power converter of the power generation system.