Abstract:
A method to reduce noise and vibration between separate blade segments of a jointed wind turbine rotor blade includes determining an actual offset at a chord-wise joint line between the shell members of the first and second blade segments at a load condition on the jointed wind turbine rotor blade, wherein the offset is any one or combination of a flap-wise offset, a twist-wise offset, or a yawl-wise offset. The method defines a modified configuration of the joint structure at a no-load condition on the wind turbine rotor blade that compensates at least partially for the actual offset at the load condition, and the first and second blade segments are connected with the modified configuration of the joint structure.
Abstract:
A jointed wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint line. Each of the blade segments includes a pressure side shell member and a suction side shell member. A sealing tape is applied over the shell members so as to bridge across the chord-wise joint line. The sealing tape includes side edges that are aligned parallel with airflow over the shell members at the chord-wise joint line at a defined load and operational condition on the jointed wind turbine blade.
Abstract:
A rotor blade component for a wind turbine includes a first structural component, such as a spar cap, formed from a plurality of stacked pultruded members. A second structural component, such as a shear web, is fixed to the first structural component at a joint interface. One or more webs form the joint interface, wherein each of the webs has a first section bonded between at least two of the pultruded members in the first structural component and a second section extending across the joint interface and bonded onto or into the second structural component.
Abstract:
A jointed wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint line. Each of the blade segments includes a pressure side shell member and a suction side shell member. A sealing tape is applied over the shell members so as to bridge across the chord-wise joint line. The sealing tape includes side edges that are aligned parallel with airflow over the shell members at the chord-wise joint line at a defined load and operational condition on the jointed wind turbine blade.
Abstract:
A wind turbine blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. The first blade segment includes a beam structure extending lengthways that structurally connects with the second blade segment at a receiving section, wherein the beam structure forms a portion of an internal support structure and includes a shear web connected with a suction side spar cap and a pressure side spar cap. The present technology also includes a joint rod located at a first end of the beam structure for connecting with the receiving section of the second blade segment to form a coupling joint about a joint axis. The coupling joint is coupled to an adjustable elastic support. The receiving section may further include a torque coupling positioned offset from the joint axis, such that a bending motion of the beam structure automatically induces a twist motion. A method of assembling the wind turbine blade is additionally disclosed.
Abstract:
A method for manufacturing a rotor blade panel of a wind turbine includes placing one or more fiber-reinforced outer skins into a mold of the rotor blade panel. The method also includes printing and depositing, via a computer numeric control (CNC) device, a plurality of rib members that form at least one three-dimensional (3-D) reinforcement grid structure onto an inner surface of the one or more fiber-reinforced outer skins. Further, the grid structure bonds to the one or more fiber-reinforced outer skins as the grid structure is deposited. Moreover, the method includes printing at least one additional feature into the grid structure.
Abstract:
A wind turbine is presented. The wind turbine includes a tower, a rotor coupled to the tower, and a plurality of blades coupled to the rotor, wherein each of the plurality of blades comprises a root and a plurality of root inserts positioned circumferentially along the root. Each of the root inserts includes a metal bushing including an outer surface and a plurality of grooves formed at least on the outer surface, a core coupled to the metal bushing, and a plurality of layers wrapped around the metal bushing and the core, wherein a layer of the plurality of layers comprises a different fiber orientation from a fiber orientation of another layer of the plurality of layers.
Abstract:
A wind turbine blade includes a first shell member including a first mating surface along a first edge of the wind turbine blade. Also, the wind turbine blade includes a second shell member including a second mating surface along the first edge of the wind turbine blade, wherein the second mating surface is opposite to the first mating surface. Further, the wind turbine blade includes a bonding material disposed between the first mating surface and the second mating surface and configured to bond the first mating surface to the second mating surface. Moreover, the wind turbine blade includes a constrainer positioned at a desired bond line and coupled to one of the first mating surface and the second mating surface, wherein the constrainer is configured to restrict the bonding material from migrating into an interior cavity of the wind turbine blade.
Abstract:
A method of manufacturing is presented. The method includes providing a plurality of structural layers comprising a plurality of composite rods, wherein at least one structural layer from the plurality of structural layers is attached to a separation layer. The method further includes stacking the plurality of structural layers, detaching the separation layer from the at least one structural layer, and curing the plurality of structural layers to form a structural component of a wind turbine blade.
Abstract:
A wind turbine blade includes a first shell member including a first mating surface along a first edge of the wind turbine blade. Also, the wind turbine blade includes a second shell member including a second mating surface along the first edge of the wind turbine blade, wherein the second mating surface is opposite to the first mating surface. Further, the wind turbine blade includes a bonding material disposed between the first mating surface and the second mating surface and configured to bond the first mating surface to the second mating surface. Moreover, the wind turbine blade includes a constrainer positioned at a desired bond line and coupled to one of the first mating surface and the second mating surface, wherein the constrainer is configured to restrict the bonding material from migrating into an interior cavity of the wind turbine blade.