WELD-BRAZING TECHNIQUES
    41.
    发明申请

    公开(公告)号:US20200238415A1

    公开(公告)日:2020-07-30

    申请号:US16256340

    申请日:2019-01-24

    Abstract: A system includes a gas turbine component having a recessed portion with a recessed surface in a hard-to-weld (HTW) material. The system includes a plate disposed over the recessed portion. The plate has an easy-to-weld (ETW) material. The plate has an outer surface and an inner surface, and the inner surface faces the recessed portion. The system includes a braze material disposed within the recessed portion between the recessed surface and the inner surface of the plate. The braze material is configured to bond the recessed surface of the recessed portion with the inner surface of the plate when the braze material is heated to a brazing temperature. The system includes a filler material disposed on the outer surface of the plate disposed over the recessed portion. Application of the filler material to the outer surface of the plate is configured to heat the braze material to the brazing temperature.

    Method, brazed article, and brazing assembly

    公开(公告)号:US10654120B2

    公开(公告)日:2020-05-19

    申请号:US15373895

    申请日:2016-12-09

    Abstract: A method includes heating a brazing material in a braze chamber of a first component to a braze temperature to melt the brazing material. The brazing material flows from the braze chamber, through at least one internal channel of the first component, and into a braze gap between the first component and a second component to braze the first component to the second component. A brazed article includes a first component having a braze chamber and at least one internal channel extending from the braze chamber to an external surface, a second component having at least one braze surface separated from the external surface of the first component by a braze gap, and a braze material in the braze gap. A braze assembly includes a first component, a second component, and a brazing material in the braze chamber.

    NICKEL-BASED SUPERALLOY AND ARTICLES

    公开(公告)号:US20200149134A1

    公开(公告)日:2020-05-14

    申请号:US16185185

    申请日:2018-11-09

    Abstract: A composition of matter includes from about 16 to about 20 wt % chromium, greater than 6 to about 10 wt % aluminum, from about 2 to about 10 wt % iron, less than about 0.04 wt % yttrium, less than about 12 wt % cobalt, less than about 1.0 wt % manganese, less than about 1.0 wt % molybdenum, less than about 1.0 wt % silicon, less than about 0.25 wt % carbon, about 0.03 wt % boron, less than about 1.0 wt % tungsten, less than about 1.0 wt % tantalum, about 0.5 wt % titanium, about 0.5 wt % hafnium, about 0.5 wt % rhenium, about 0.4 wt % lanthanide elements, and the balance being nickel and incidental impurities. This nickel-based superalloy composition may be used in superalloy articles, such as a blade, nozzle, a shroud, a splash plate, a squealer tip of the blade, and a combustor of a gas turbine engine.

    Article and method of forming an article

    公开(公告)号:US10227878B2

    公开(公告)日:2019-03-12

    申请号:US15065968

    申请日:2016-03-10

    Abstract: An article and method of forming an article are provided. The article includes a side wall at least partially defining an inner region and an outer region of the article, the side wall having a first end and a second end, an end wall formed proximal to the first end of the side wall, the end wall defining a tip portion of the article, and a cooling channel formed in the side wall, within the tip portion. The method of forming an article includes positioning a first sheet of material having a channel formed therein over a first end of a body, positioning at least one additional sheet of material over the first sheet of material, and securing the first sheet of material and the at least one additional sheet of material to the body to form a tip portion including a cooling channel formed therein.

    Methods of forming a passive strain indicator on a preexisting component

    公开(公告)号:US10126119B2

    公开(公告)日:2018-11-13

    申请号:US15407595

    申请日:2017-01-17

    Abstract: A method of forming a passive strain indicator on a preexisting component includes directly depositing a plurality of fiducial markers on a portion of the outer surface of the preexisting component, the fiducial markers including a material that is compatible with the material of the outer surface. A method of evaluating a component includes initially scanning a plurality of fiducial markers on a portion of an outer surface of the component, subjecting the component to at least one duty cycle, subsequently scanning the plurality of fiducial markers after the at least one duty cycle, measuring a displacement of the plurality of fiducial markers by comparing the subsequent scan to the initial scan, and determining a remaining usable life of the component by looking up in a database a predetermined value of the remaining usable life of the component corresponding to the measured displacement of the plurality of fiducial markers.

    METHODS OF FORMING A PASSIVE STRAIN INDICATOR ON A PREEXISTING COMPONENT

    公开(公告)号:US20180202799A1

    公开(公告)日:2018-07-19

    申请号:US15407595

    申请日:2017-01-17

    CPC classification number: G01B11/165 G01B11/002 G01B11/24 G01B21/047 G01M15/14

    Abstract: A method of forming a passive strain indicator on a preexisting component includes directly depositing a plurality of fiducial markers on a portion of the outer surface of the preexisting component, the fiducial markers including a material that is compatible with the material of the outer surface. A method of evaluating a component includes initially scanning a plurality of fiducial markers on a portion of an outer surface of the component, subjecting the component to at least one duty cycle, subsequently scanning the plurality of fiducial markers after the at least one duty cycle, measuring a displacement of the plurality of fiducial markers by comparing the subsequent scan to the initial scan, and determining a remaining usable life of the component by looking up in a database a predetermined value of the remaining usable life of the component corresponding to the measured displacement of the plurality of fiducial markers.

Patent Agency Ranking