Abstract:
Methods for accommodating a non-integer multiple of the M2 pitch for the cell height of a semiconductor cell and the resulting devices are disclosed. Embodiments may include forming a cell within an integrated circuit (IC) with a height of a first integer and a remainder times a track pitch of a metal track layer, and forming power rails within the metal track layer at boundaries of the cell accommodating for the remainder.
Abstract:
Embodiments described herein provide approaches for improved circuit routing using a wide-edge pin. Specifically, provided is an integrated circuit (IC) device comprising a standard cell having a first metal layer (M1) pin coupled to a second metal layer (M2) wire at a via. The M1 pin has a width greater than a width of the via sufficient to satisfy an enclosure rule for the via, while the M1 pin extends vertically past the via a distance substantially equal to or greater than zero. This layout increases the number of available pin access points within the standard cell and thus improves routing efficiency and chip size.
Abstract:
A method involving identifying a pattern for an overall target cut mask to be used in patterning line-type features that includes a target non-rectangular opening feature having an inner, concave corner, decomposing the overall target cut mask pattern into first and second sub-target patterns, wherein the first sub-target pattern comprises a first rectangular-shaped opening feature corresponding to a first portion, but not all, of the target non-rectangular opening feature and the second sub-target pattern comprises a second rectangular-shaped opening feature corresponding to a second portion, but not all, of the target non-rectangular opening feature, the first and second openings overlapping adjacent the inner, concave corner, and generating first and second sets of mask data corresponding to the first and second sub-target patterns, wherein at least one of the first and second sets of mask data is generated based upon an identified contact-to-end-of-cut-line spacing rule.
Abstract:
One method disclosed herein involves, among other things, identifying a plurality of features within an overall pattern layout that cannot be decomposed using the SADP process, wherein at least first and second adjacent features are required to be same-color features, decreasing a spacing between the first and second adjacent features such that the first feature and the second feature become different-color features so as to thereby render the plurality of features decomposable using the SADP process, decomposing the overall pattern layout into a mandrel mask pattern and a block mask pattern, and generating mask data sets corresponding to the mandrel mask pattern and the block mask pattern.
Abstract:
Methodologies and an apparatus enabling a selection of design rules to improve a density of features of an IC design are disclosed. Embodiments include: determining a feature overlapping a grating pattern of an IC design, the grating pattern including a plurality of grating structures; determining a shape of a cut pattern overlapping the grating pattern; and selecting one of a plurality of rules for the feature based on the determined shape.
Abstract:
Embodiments described herein provide approaches for improved circuit routing using a wide-edge pin. Specifically, provided is an integrated circuit (IC) device comprising a standard cell having a first metal layer (M1) pin coupled to a second metal layer (M2) wire at a via. The M1 pin has a width greater than a width of the via sufficient to satisfy an enclosure rule for the via, while the M1 pin extends vertically past the via a distance substantially equal to or greater than zero. This layout increases the number of available pin access points within the standard cell and thus improves routing efficiency and chip size.
Abstract:
A design methodology for determining a via enclosure rule for use with a self-aligned double pattern (SADP) technique is disclosed. The shape of the block mask serves as a criterion for choosing a via enclosure rule. Different block mask shapes within an integrated circuit design may utilize different rules and provide different margins for via enclosure. A tight via enclosure design rule reduces the margin of a line beyond the via where possible, while a loose via enclosure design rule increases the margin of a line beyond the via where it is beneficial to do so.
Abstract:
A system and design methodology for performing routing in an integrated circuit design is disclosed. An integrated circuit design is first created using standard cells having metal level 2 (M2) power rails. Routing is performed and power rail current density for the integrated circuit is computed. Standard cells that have power rail current density below a predetermined threshold are replaced with a functionally equivalent standard cell that does not have M2 power rails, and the routing operation is performed again, until the design converges.
Abstract:
At least one method, apparatus and system disclosed involves a circuit layout for an integrated circuit device comprising a plurality of wider-than-default metal formations for a functional cell. A design for an integrated circuit device is received. The design comprises at least one functional cell. A first pair of wide metal formations are provided. The first pair of wide metal formations comprise a first metal formation and a second metal placed about a first cell boundary of the functional cell for providing additional space for routing, for high-drive routing, and/or for power routing.
Abstract:
At least one method, apparatus and system disclosed involves circuit layout for an integrated circuit device comprising an asymmetrically placed metal formation. A design for an integrated circuit device is received. The design comprises at least one functional cell. A first metal formation is placed asymmetrically about a first cell boundary of the functional cell for providing additional space for routing.