Abstract:
Methods and systems for diagnosing vehicle systems using vehicle sounds, vibrations, or both, are provided. In one embodiment, a system comprises one or more sensors and a processor. The one or more sensors are configured to measure a sound, a vibration, or both, produced by one or more vehicle components. The processor is coupled to the one or more sensors. The processor is configured to compare the measured sound, vibration, or both with an expected sound for the one or more vehicle components, generating a comparison; and diagnose a vehicle system or device using the comparison.
Abstract:
An audio system of a vehicle includes a mode module that sets a mode signal to a first mode when a vehicle speed is greater than a predetermined speed and a longitudinal acceleration of the vehicle is less than a predetermined acceleration. The predetermined acceleration is less than zero and the predetermined speed is greater than zero. A sound control module, when the mode signal is in the first mode, selectively sets audio characteristics for a deceleration event of the vehicle based on randomization parameters. An audio driver module, based on the audio characteristics, applies power to speakers to output sound within a passenger cabin of the vehicle.
Abstract:
A system includes a stop-start module that determines, based on characteristics of a vehicle, whether to deactivate an engine of the vehicle, that selectively deactivates the engine based on the characteristics, that, subsequent to deactivating the engine, selectively reactivates the engine based on the characteristics, and that generates an indication signal corresponding to the determination. A driver alert module receives the indication signal and selectively generates, based on the indication signal, a masking sound to be played by an audio system of the vehicle while the engine is deactivated.
Abstract:
Road noise masking for a vehicle includes determining, by a computer processor, an expected interior sound associated with the vehicle. The expected interior sound is defined by a design of the vehicle in conjunction with road conditions encountered by the vehicle. The road noise masking also includes monitoring, via the computer processor, information sources of the vehicle during a driving event. Upon determining a current road surface from the monitoring, the road noise masking includes calculating a masking noise shape commensurate with the expected interior sound, and transmitting instructions including the masking noise shape to an audio system in the vehicle. The audio system produces masking noise from a tuner of the audio system that approximates the masking noise shape.
Abstract:
A vehicle system is provided that includes a sound augmentation system with a sound augmentation generator that produces an augmented audio output to drive at least one audio output based on a transfer function. The vehicle system also includes a sound augmentation system health monitor that determines a current performance level of the sound augmentation system based on at least one audio input and a feedback of the augmented audio output, and triggers a transfer function update prompt based on a difference between the current performance level and an expected performance level being at a threshold level. A user interface outputs the transfer function update prompt and receives a transfer function calibration request in response to the transfer function update prompt. A transfer function calibration module drives a calibration sequence on at least one audio output and monitors at least one audio input to determine an updated transfer function.
Abstract:
A control system for a vehicle having a fixed gear transmission and an engine that outputs an actual RPM signal is provided. The control system includes a vehicle bus, a shifting module, a simulated RPM module, and an engine sound enhancement (“ESE”) module. The vehicle bus transmits a signal indicating a plurality of operating conditions of the vehicle. The shifting module receives the signal from the vehicle bus to determine if the operating parameters of the vehicle indicate that a gear shift by the fixed gear transmission is imminent within a predetermined amount of time. The simulated RPM module is in communication with the shifting module for generating a simulated RPM signal if the gear shift is imminent. The simulated RPM signal has a greater increase in engine RPM with respect to time prior to the gear shift compared to the actual RPM signal.
Abstract:
In various embodiments, methods, systems, and vehicles are provided for masking a tonal noise of a motor. In certain embodiments, a vehicle includes a drive system and an active masking acoustic signal generator (AMAG). The drive system includes a motor generating a tonal noise. The AMAG is configured to at least facilitate masking the tonal noise, by introducing a complementary harmonic tone, injecting dithering into the motor, or both.
Abstract:
A powertrain component for a vehicle including a housing, and a mechanical system arranged in the housing. The mechanical system provides motive power to the vehicle. A passive sound enhancement system includes a bracket mounted to the housing. The bracket is selectively tuned to respond to one or more selected frequencies of the powertrain component.
Abstract:
Methods and apparatus are provided for controlling noise in a cabin of a vehicle. In various embodiments, a method for controlling noise in a cabin of a vehicle includes measuring a first sound via a microphone in the cabin; obtaining a second sound from a loudspeaker of the cabin; estimating, via a processor, a third sound at a virtual location that is remote from both the microphone and the loudspeaker, using the first sound, the second sound, and one or more transfer functions; and applying active noise cancellation for the cabin based on the third sound at the virtual location.
Abstract:
An audio system of a vehicle includes: an acceleration state module that sets an acceleration state signal to a first state when a longitudinal acceleration of the vehicle is greater than a first predetermined acceleration, where the first predetermined acceleration is positive; a sound control module that selectively sets audio characteristics for an acceleration event in response to determinations that all of: (i) the acceleration state signal is in the first state; (ii) an electric motor is outputting positive torque to a powertrain of the vehicle; and (iii) a driver is applying pressure to an accelerator pedal; and an audio driver module that, based on the audio characteristics, applies power to speakers to output sound within a passenger cabin of the vehicle.