Abstract:
A method is used to evaluate a camera-related subsystem in a digital network, e.g., aboard a vehicle or fleet, by receiving, via a camera diagnostic module (CDM), sensor reports from the subsystem and possibly from a door sensor, rain/weather sensor, or other sensor. The CDM includes data tables corresponding to subsystem-specific fault modes. The method includes evaluating performance of the camera-related subsystem by comparing potential fault indicators in the received sensor reports to one of the data tables, and determining a pattern of fault indicators in the reports. The pattern is indicative of a health characteristic of the camera-related subsystem. A control action is executed with respect to the digital network in response to the health characteristic, including recording a diagnostic or prognostic code indicative of the health characteristic. The digital network and vehicle are also disclosed.
Abstract:
A method for use with a vehicle having one or more subsystems includes receiving vehicle health management (VHM) information via a controller indicative of a state of health of the subsystem. The VHM information is based on prior testing results of the subsystem. The method includes determining a required testing profile using the testing results, applying the testing profile to the subsystem to thereby control a state of the subsystem, and measuring a response of the subsystem to the applied testing profile. The method also includes recording additional testing results in memory of the controller that is indicative of a response of the subsystem to the applied testing profile. The vehicle includes a plurality of subsystems and a controller configured to execute the method.
Abstract:
A method proactively transitions performance of a functional operation from a primary subsystem to a secondary subsystem within a vehicle or other system having an electronic control unit (ECU). The method includes receiving health management information via the ECU when the primary subsystem is actively performing the functional operation within the system and the secondary subsystem operates in a standby mode, wherein the health information is indicative of a numeric state of health (SOH) of the primary subsystem. The method also includes comparing the numeric SOH to a calibrated non-zero threshold SOH, and then commanding, via the ECU, a transition of the performance of the functional operation to the secondary subsystem and placing the primary subsystem in the standby mode when the numeric SOH is less than the calibrated non-zero threshold SOH. A vehicle executes the method via the ECU.
Abstract:
An autonomic vehicle control system is described, and includes a vehicle spatial monitoring system including a subject spatial sensor that is disposed to monitor a spatial environment proximal to the autonomous vehicle. A controller is in communication with the subject spatial sensor, and the controller includes a processor and a memory device including an instruction set. The instruction set is executable to evaluate the subject spatial sensor, which includes determining first, second, third, fourth and fifth SOH (state of health) parameters associated with the subject spatial sensor, and determining an integrated SOH parameter for the subject spatial sensor based thereupon.
Abstract:
An autonomic vehicle control system includes a vehicle spatial monitoring system including a plurality of spatial sensors disposed to monitor a spatial environment proximal to the autonomous vehicle. A controller is in communication with the spatial sensors of the vehicle spatial monitoring system, and the controller includes a processor and a memory device including an instruction set. The instruction set is executable to generate a perception result associated with a static field of view for each of the spatial sensors, wherein each of the spatial sensors is positioned at an analogous orientation to generate the respective perception result associated with the static field of view. The perception results from the plurality of spatial sensors are compared to detect a fault associated with one of the spatial sensors.
Abstract:
A method diagnoses a no-start condition in a powertrain having an engine and a starter system operable for starting the engine. The starter system includes a battery, solenoid relay, starter solenoid, and starter motor. The method includes recording starter data over a calibrated sampling duration in response to a requested start event when the solenoid relay is enabled, including a cranking voltage and engine speed. If no battery current sensor is used, the method derives a resistance ratio using an open-circuit voltage and a minimum cranking voltage of the battery. When such a sensor is used, the method derives a battery and starter resistance. A fault mode of the starter system is then identified via a controller using the starter data and either the resistance ratio or the battery and starter resistances. A control action executes that corresponds to the identified fault mode.
Abstract:
A controller area network (CAN) includes a CAN bus having a CAN-H wire, a CAN-L wire, and a pair of CAN bus terminators located at opposite ends of the CAN bus. The CAN further includes a plurality of nodes including controllers wherein at least one of the controllers is a monitoring controller. The monitoring controller includes a CAN monitoring routine for detecting a wire short fault in the CAN bus and its location.
Abstract:
A controller area network (CAN) includes a CAN bus having a CAN-H wire, a CAN-L wire, and a pair of CAN bus terminators located at opposite ends of the CAN bus. The CAN further includes a plurality of nodes including controllers wherein at least one of the controllers is a monitoring controller. The monitoring controller includes a detection control routine for isolating faults on the CAN bus including measuring a CAN-H wire voltage, measuring a CAN-L wire voltage, and isolating a short fault based upon the CAN-H wire voltage and the CAN-L wire voltage.
Abstract:
A method for diagnosing a no-start fault of a vehicle push-button start system including a push-button switch, where the system starts a vehicle engine if the switch is pressed and a vehicle brake is applied. The method includes detecting that a no engine crank condition has occurred if the switch is pressed and the brake is applied, and if so, performs a no crank diagnosis. The method also includes determining that a starter control relay has not been enabled after the system is in a crank power mode, and if so, performs a starter not-enabled diagnosis. The method also includes determining that the starter control relay has been disabled before the engine is running, and if so, performs a start disable diagnosis. The method also includes determining that the engine has stalled within some minimum time after it has successfully been started, and if so, performs an engine stall diagnosis.
Abstract:
A controller area network (CAN) has a plurality of CAN elements including a communication bus and a plurality of controllers. A method for monitoring the CAN includes detecting occurrences of a first short-lived fault and a second short-lived fault within a predefined time window. A first fault set including at least one inactive controller associated with the first short-lived fault and a second fault set including at least one inactive controller associated with the second short-lived fault are identified. An intermittent fault is located in the CAN based upon the first and second fault sets.