Abstract:
A turbine pump assembly has a turbine, a centrifugal pump, and a passive electrical speed control system. The turbine has a peak efficiency at a first speed that is lower than a second speed at which the centrifugal pump is operating at a peak power requirement. A rocket thrust vector control system is also disclosed.
Abstract:
A flux-regulated permanent magnet machine (PMM) includes a stationary portion and a rotating portion. The stationary portion includes a plurality of stator/armature windings. The rotating portion includes a plurality of permanent magnets and a control/field winding that is supplied with current to control the magnetic flux presented to the stator/armature windings.
Abstract:
A propulsion system has a gas turbine engine optimized to operate at a single operating condition corresponding to a maximum continuous power output of the gas turbine engine, an electric motor system, an electric machine rotatably attached to the gas turbine engine and electrically connected to the electric motor system, and an energy storage system having bi-directional electrical connections with the electric motor system and the electric machine. A method of operating the propulsion system including operating the gas turbine engine for a first period of time to provide electric power to the electric motor system and to recharge the energy storage system, turning off the gas turbine for a second period of time, and discharging the energy storage system to operate the electric motor system during the second period of time.
Abstract:
A cooling supply package for an electronic component has a supply port communicating with a plurality of outer supply channels, and a return port communicating with a plurality of outer return channels. The outer supply channels and outer return channels communicate with distinct ones of openings in a slot layer and into return and supply slots, respectively. An orifice layer supplies fluid to an electronic component from supply slots and receives return fluid into the return slots after having cooled the electronic component. A cooling supply and electronic combination is also disclosed.
Abstract:
A blower including: a forward end; an aft end located opposite the forward end; a shaft located at the aft end; a flange located at the forward end; an internal surface defining an axial passageway within the blower; an external surface radially outward of the internal surface; one or more radial passageway formed within the flange and fluidly connected to the axial passageway, the radial passageway extending from the internal surface to the external surface; and a plurality of blower blades located within the flange and defining the radial passageway.
Abstract:
A power module includes a turbine arranged along a rotation axis, an interconnect shaft fixed in rotation relative to the turbine, and a compressor with a regenerative compressor wheel. The regenerative compressor wheel is fixed in rotation relative to the interconnect shaft supported for rotation with the turbine about the rotation axis. Generator arrangements, unmanned aerial vehicles, and methods of generating electrical power are also described.
Abstract:
The electrical power generation system including a micro-turbine alternator. The micro-turbine alternator including a combustor, at least one turbine configured to be driven by an exhaust from the combustor, at least one compressor operably connected to the combustor to provide a compressed airflow to the combustor, one or more shafts connecting the at least one turbine to the at least one compressor such that rotation of the at least one turbine drives rotation of the at least one compressor, and a recuperator configured to transfer heat from the exhaust exiting the at least one turbine to the compressed airflow from the at least one compressor entering the combustor.
Abstract:
A rotor assembly of an electric machine includes a rotor body and a shaft assembly positioned at a central axis of the rotor assembly, and operably connected thereto. The shaft assembly includes a main rotor shaft operably connected to the rotor body, a center drive shaft located inside of the main rotor shaft, and a hydraulic damper sleeve located radially between the main rotor shaft and the center drive shaft. The hydraulic damper sleeve defines a plurality of cavities between the hydraulic damper sleeve and the center drive shaft. The hydraulic damper sleeve is configured to urge a fluid into and out of the plurality of cavities thereby damping relative circumferential motion between the main rotor shaft and the center drive shaft. A plurality of flow restrictors are configured to easily allow fluid into the plurality of cavities, while restricting flow of fluid out of the plurality of cavities.
Abstract:
An electrical power generation system including a micro-turbine alternator. The micro-turbine alternator including: a combustion chamber, at least one turbine driven by combustion gases from the combustion chamber, a first stage compressor, and a second stage compressor. The first stage compressor and the second stage compressor being operably connected to the combustion chamber to provide a compressed airflow thereto. The micro-turbine alternator including one or more shafts connecting the at least one turbine to the first stage compressor and the second stage compressor such that rotation of the at least one turbine drives rotation of the first stage compressor and second stage compressor. The one or more shafts include a turbine shaft attached to the at least one turbine a compressor shaft attached to the first stage compressor, and a coupling assembly configured to operably connect the turbine shaft to the compressor shaft via a magnetic coupling force.
Abstract:
A rotor assembly of an electric machine includes a rotor body and a shaft assembly located at a central axis of the rotor assembly, and operably connected to the rotor body. The shaft assembly includes a main rotor shaft operably connected to the rotor body, a center drive shaft located inside of the main rotor shaft, and a hydraulic damper sleeve located radially between the main rotor shaft, defining a plurality of cavities between the hydraulic damper sleeve and the center drive shaft. The hydraulic damper sleeve is configured to urge a fluid into and out of the plurality of cavities thereby damping relative circumferential motion between the main rotor shaft and the center drive shaft.