Abstract:
In one example, a build material recovery system for additive manufacturing includes: a receiving station to receive a portable container containing a build material; a separator to remove build material from a stream of air; a first conduit to carry build material in the stream of air from the receiving station to the separator; a source of negative air pressure to pull the stream of air with the build material through the first conduit from the receiving station to the separator; a humidifier to add moisture to the stream of air; and a second conduit to carry build material from the separator to the receiving station.
Abstract:
An example three-dimensional printer includes a humidity source, a build material reservoir, a conduit between the humidity source and the build material reservoir, an air source to transfer air from the humidity source through the conduit towards the build material reservoir, and a valve assembly connected to the conduit to control a flow of the air in the conduit while the printer enters an inactive mode of operation. The air source is to remain in an active mode of operation. The air source is controlled to transmit the air in the conduit until the air in the conduit adjacent to the build material reservoir reaches a temperature and relative humidity threshold.
Abstract:
A method of three-dimensional (3D) printing is provided. Print data is received, which defines patterns of at least one agent to be applied to a layer of build material. The print data is modified to add a further pattern of a detailing agent to be selectively applied to the layer of build material to generate fracture regions in a processed volume of build material.
Abstract:
In one example, a temperature control system for a spreader roller in an additive manufacturing machine includes: a first duct to carry air to an air passage through the roller; a second duct to carry air away from the air passage through the roller; a fan to move air through the ducts; a temperature sensor to sense a temperature of the roller; and a controller to control a flow of air through the ducts based on a temperature sensed by the sensor.
Abstract:
According to an example, an apparatus to prevent media transport jams may include an actuator to load and advance a media within a media path width. The apparatus may also include a first sensor and a second sensor to detect respective edges of the media, in which the first sensor and the second sensor may be positioned outside of a media action area and on opposite sides of the media path width. The apparatus may further include a controller to prevent the actuator from advancing the media along the media path in response to a detection of one or both of the first edge of the media by the first sensor and the second edge of the media by the second sensor.
Abstract:
In an example, a scanning system includes a scanner device, a first bias member, and a second bias member. The example first bias member is able to apply pressure on a medium towards a scan surface of the scanner device (e.g., apply pressure at a scan zone defined by the boundaries of the scanner device) and the example second bias member is able to orient the medium towards the scan surface before the medium reaches the first bias member.
Abstract:
According to an example, an apparatus for controlling a media scan operation may include a first scan module to scan a section of a media, a tracking mechanism to track the media as the media is moved past the first scan module, and a controller. The controller may receive signals corresponding to the media movement from the tracking mechanism, determine, based upon the received signals, a current position of the media, and vary a timing at which the first scan module collects a scan of the section of the media based upon the determined current position of the media.
Abstract:
In one example, a group of interchangeable supply modules to hold powdered build material for additive manufacturing. Each supply module in the group includes an exterior sized and shaped to fit into a mixer; an interior defining a non-circular mixing chamber, and an outlet through which powdered build material may leave the mixing chamber.
Abstract:
In an example implementation, a fluid supply assembly includes a printhead assembly (PHA) attachable to a printing system carriage. A first fluid conduit permanently affixed to the PHA, and a second fluid conduit is attachable to the first fluid conduit by a fluid conduit coupling to enable fluid to flow from an off-axis fluid supply to the PHA.
Abstract:
A printer mechanism includes a printhead to print on a print medium, and a platen located generally adjacent the printhead such that the platen and the printhead define a print zone therebetween. The platen includes a plurality of elongate ribs that project from an upper surface of the platen in a spaced relationship and positioned to contact a lower surface of the print medium such that the print medium bends downwardly between the ribs to provide an undulated section of the print medium with hills and valleys in the print zone. At least one shape control mechanism transforms each of the hills in the print zone into a corresponding valley in an output path adjacent to the print zone and transforms each of the valleys in the print zone into a corresponding hill in the output path.