Abstract:
A method and an apparatus for detecting a pedestrian by a vehicle during night driving are provided, in which the apparatus includes: a first camera configured to take a first image including color information of a vicinity of the vehicle during night driving; a second camera configured to take a second image including thermal distribution information of the vicinity of the vehicle; a pedestrian detector configured to detect a non-pedestrian area by using the color information from the first image and detect a pedestrian area by excluding the non-pedestrian area from the second image; and a display configured to match and display the pedestrian area on the second image.
Abstract:
An autonomous driving control method of a vehicle is provided. The method includes recognizing accuracy of a map within the vehicle and determining an available autonomous driving level. Sensor coverage of the vehicle is recognized and an available autonomous driving level for each section among the available autonomous driving levels is determined. A path with autonomous driving level indicated thereon among driving paths is then recommended according to a destination set in the map, and autonomous driving level calculation information is updated in real-time according to a selected path and autonomous information is provided to a driver.
Abstract:
An apparatus for controlling narrow road driving of a vehicle includes: an image transform unit generating a depth map using depth information of an object in a front image of a road on which the vehicle travels and generating a height map of the front image by transforming the generated depth map; a map analysis unit recognizing the object and calculating a driving allowable area of the road based on the generated height map; a determination unit determining whether the road is a narrow road based on the calculated driving allowable area and, when the road is determined to be the narrow road, determining whether the vehicle is able to pass through the narrow road; and a signal processing unit controlling driving of the vehicle on the narrow road based on the determination of whether the vehicle is able to pass through the narrow road.
Abstract:
An apparatus and method for controlling a vehicle speed based on information about forward vehicles that travel in the same lane may be acquired using Vehicle to Everything (V2X) communications in a cooperative adaptive cruise control (CACC) system. The CACC system includes a communication unit receiving vehicle information from neighboring vehicles using V2V communications; an information collection unit collecting vehicle information of the neighboring vehicles and the subject vehicle using sensors; and a control unit determining a forward vehicle and a far-forward vehicle using the sensors, selecting first and second target vehicles for being followed by the subject vehicle based on the vehicle information of the forward vehicle and the far-forward vehicle and the vehicle information of the neighboring vehicles, and controlling the driving speed of the subject vehicle based on speed information of the first and second target vehicles.
Abstract:
A vehicle positioning apparatus and method are provided that are capable of more accurately measuring the position of a traveling vehicle without interoperating with a DGPS. The method includes calculating a position of the traveling vehicle based on coordinates of the respective GPS satellites shared by a surrounding vehicle and the traveling vehicle. In addition, a position coordinate is calculated of the surrounding vehicle measured by the reference of the traveling vehicle.
Abstract:
An apparatus and method for detecting an object on a road are capable of enhancing performance of a driving environment recognition system of a vehicle by detecting a size and a position of an object on a road with high accuracy on the basis of radar and lidar data respectively obtained using a radar sensor and a lidar sensor installed in the vehicle.
Abstract:
An apparatus and a method for determining careless driving are provided and determine more reliable careless driving by generating normal driving patterns using driving performance data for a reference time at the beginning of driving. In addition, careless driving patterns greater than a predetermined number are detected using the normal driving pattern and a boundary between the normal driving and the careless driving is determined using a supervised learning method. The careless driving of the driver is then determined based on the determined boundary.
Abstract:
A system and method for filtering LiDAR data is provided. The system includes a LiDAR data collector that is configured to collect the LiDAR data from a LiDAR and store the LiDAR data in a matrix structure. A noise point determiner is configured to determine whether a first filtering condition for determining whether a point within a predetermined reference distance in the LiDAR data is present, a second filtering condition for determining whether a present point adjacent to a left and right by a reference of a reference point in the matrix structure is a first reference value or less, and a third filtering condition for determining whether a present point adjacent to a top and bottom by the reference of the reference point is a second reference value or less are satisfied.
Abstract:
An apparatus and a method are provided for recognizing driving environment for an autonomous vehicle. The apparatus includes a controller configured to receive navigation information from a satellite navigation receiver. The controller is further configured to receive map data from a map storage and image data from an image sensor regarding captured images from around a vehicle and distance information from a distance sensor regarding sensed objects positioned around the vehicle. The controller is also configured to determine a fusion method for information measured by the image sensor and the distance sensor based on a receiving state of the satellite navigation receiver and precision of the map data to recognize the driving environment.
Abstract:
A vehicle positioning apparatus and method are provided that are capable of more accurately measuring the position of a traveling vehicle without interoperating with a DGPS. The method includes calculating a position of the traveling vehicle based on coordinates of the respective GPS satellites shared by a surrounding vehicle and the traveling vehicle. In addition, a positon coordinate is calculated of the surrounding vehicle measured by the reference of the traveling vehicle.