摘要:
A SCM-PON using WDM includes: an OLT for transferring downstream data from an external service provider through downstream optical signals and transferring upstream data transferred through upstream optical signals to an outside; an ODN for distributing the downstream optical signals from the OLT and multiplexing the upstream optical signals to the OLT; and a plurality of ONUs for processing the downstream optical signals transferred from the OLT through the ODN and transferring upstream data of subscribers for the OLT through the upstream optical signals, wherein the optical signals between the OLT and the ONUs are divided into wavelength channels with different wavelengths and sub-carrier channels obtained by time-dividing the wavelength channels, and the upstream data and the downstream data are transferred through the sub-carrier channels.
摘要:
Disclosed are optical signal transmission apparatus including a reflective gain-clamped semiconductor optical amplifier and optical communication system using the optical signal transmission apparatus, which can improve modulation speed and optical power by effectively suppressing intensity noise of an incoherent light source. The optical signal transmission apparatus comprises a light source; a reflective gain-clamped semiconductor optical amplifier to generate gain-clamped optical signals having a substantially constant output intensity in a gain saturation region; a wavelength division multiplexing apparatus configured to spectrum-slice light from the light source, provide the spectrum-sliced light to the reflective gain-clamped semiconductor optical amplifier, and multiplex optical signals gain-clamped by the reflective gain-clamped optical amplifier, and a circulator for inputting the light generated by the light source to the wavelength division multiplexing apparatus, and outputting the optical signal multiplexed by the wavelength division multiplexing apparatus to a transmission link.
摘要:
Disclosed is a wavelength-division multiplexing-passive optical network having a central office including a plurality of first working and protection transmit/receive modules, working and protection optical transmitters, and a plurality of first optical switches, the first working and protection transmit/receive modules generating downstream optical signals and detecting upstream optical signals having corresponding wavelengths, the working and protection optical transmitters generating broadcasting optical signals, the first optical switches performing a switching operation when faults occur, a plurality of subscriber units for receiving broadcasting optical signals and downstream optical signals having corresponding wavelengths and generating upstream optical signals, the subscriber units including second optical switches, a remote node including working and protection optical splitters for dividing intensity of the broadcasting optical signals, the remote node being positioned between the subscriber units and the central office, working and protection main optical fibers for linking the central office with the remote node; and a plurality of working and protection branch optical fibers for linking the remote node with the subscriber units, respectively.
摘要:
The wideband optical fiber optical includes a circulator. In addition the amplifier outputs the amplified spontaneous emission (ASE) and the S-band optical signals. At least one optical fiber grating is used for passing the C- and L-band optical signals. A wavelength selective splitter outputs the L-band optical signal. A first optical fiber amplifying unit connected with the optical fiber grating and the first port of the wavelength selective splitter, for amplifying the C- and L-band optical signals and for outputting the ASE to the optical fiber grating. A second optical fiber amplifying unit for amplifying the L-band optical signals inputted from the second port of the wavelength selective splitter and for outputting the amplified L-band optical signals to the third terminal of the outputting unit. A third optical fiber amplifying unit amplifies the S-band optical signals input from the third port of the circulator, and outputs the amplified S-band optical signals to the first terminal of the outputting unit.
摘要:
A thulium-doped fiber amplifier is disclosed and includes a thulium-doped fiber to amplify optical signals belonging to S-band, a first pumping unit to output amplified spontaneous emission that represents a peak value in a predetermined wavelength range belonging to C-band, to pump the thulium-doped fiber, and a second pumping unit to output pumping light belonging to the wavelength band different from the C-band to pump the thulium-doped fiber.
摘要:
There is disclosed an optical source generator for wavelength division multiplexing optical communication systems. The optical source generator includes first and second pumping light generators; a first wavelength router for wavelength-division-demultiplexing first pumping lights inputted into a multiplexing port of its first port section to output the demultiplexed pumping lights to the demultiplexing ports of its second port section, and for wavelength-division-demultiplexing second pumping lights inputted into the multiplexing port of its second port section to output the demultiplexed pumping lights to the demultiplexing ports of its first port section; a plurality of first and second optical fiber amplifiers; a second wavelength router for wavelength-division-multiplexing optical signals inputted from the first optical fiber amplifiers into the demultiplexing ports of its first port section, and outputting the multiplexed optical signals to the multiplexing port of its second port section, and for wavelength-division-multiplexing optical signals inputted from the second optical fiber amplifiers into the demultiplexing ports of its second port section, and outputting the multiplexed optical signals to the multiplexing port of its first port section; and first and second optical band pass filters, wherein two groups of optical sources are generated bilaterally.
摘要:
A bi-directional add/drop node employed in a bi-directional path-switching network linked by an optical fiber in a loop form is disclosed. The bi-directional add/drop node has a first terminal point and a second terminal point for receiving channels over the optical fiber such that odd channels are inputted through the first terminal point are outputted through the second terminal point and even channels are inputted through the second terminal point are outputted through the first terminal point. The bi-directional add/drop node comprises, a circulation section for circulating the even and odd channels in a predetermined direction, a first input-output section located between the circulation section and the first terminal point wherein the first input-output section outputs the odd channels inputted from the first terminal point to the circulation section through a first input line and outputs the even channels inputted from the circulation section to the first terminal point through a first output line, and a second input-output section positioned between the circulation section and the second terminal point, wherein the second input-output section outputs the even channels inputted from the second terminal point to the circulation section through a second input line and outputs the odd channels inputted from the circulation section to the second terminal point through a second output line.
摘要:
Disclosed is a bi-directional optical-amplifier module including first through fourth optical amplifiers, a mid-stage device for performing a desired signal processing for an upward or downward optical signal passing therethrough, a first optical-signal-path-setting device for supplying an optical signal inputted to a first input/output terminal of the bi-directional optical-amplifier module while outputting an optical signal outputted from the fourth optical amplifier to the first input/output terminal, a second optical-signal-path-setting device for supplying an optical signal inputted to a second input/output terminal of the bi-directional optical-amplifier module while outputting an optical signal outputted from the third optical amplifier to the second input/output terminal, a third optical-signal-path-setting device for outputting an optical signal outputted from the first optical amplifier to a first input/output terminal of the mid-stage device while supplying an optical signal outputted from the first input/output terminal of the mid-stage device to the fourth optical amplifier, and a fourth optical-signal-path-setting device for outputting an optical signal outputted from the second optical amplifier to a second input/output terminal of the mid-stage device while supplying an optical signal outputted from the second input/output terminal of the mid-stage device to the third optical amplifier.
摘要:
Disclosed are optical signal transmission apparatus including a reflective gain-clamped semiconductor optical amplifier and optical communication system using the optical signal transmission apparatus, which can improve modulation speed and optical power by effectively suppressing intensity noise of an incoherent light source. The optical signal transmission apparatus comprises a light source; a reflective gain-clamped semiconductor optical amplifier to generate gain-clamped optical signals having a substantially constant output intensity in a gain saturation region; a wavelength division multiplexing apparatus configured to spectrum-slice light from the light source, provide the spectrum-sliced light to the reflective gain-clamped semiconductor optical amplifier, and multiplex optical signals gain-clamped by the reflective gain-clamped optical amplifier. and a circulator for inputting the light generated by the light source to the wavelength division multiplexing apparatus, and outputting the optical signal multiplexed by the wavelength division multiplexing apparatus to a transmission link.
摘要:
An economical wavelength-division-multiplexed passive optical network (WDM-PON) system is realized by directly modulating a wavelength-seeded light source to transmit upstream or downstream data, without using an expensive external modulator. A multiplexed signal having the same wavelength as the waveguide grating is generated and used to control the temperature of the waveguide grating and adjust the wavelength of a wavelength-division-multiplexed signal routed to a transfer link. The wavelength selectivity and stabilization of each light source are not required. Since upstream and downstream signals can be multiplexed and demultiplexed concurrently by each waveguide grating located in the central office and the remote node, it is possible to reduce the number of waveguide gratings used in a WDM optical network. In addition, upstream and downstream signals can be transmitted concurrently using a single-strand transfer optical fiber, thereby realizing an economical and efficient WDM-PON.