摘要:
Disclosed are optical signal transmission apparatus including a reflective gain-clamped semiconductor optical amplifier and optical communication system using the optical signal transmission apparatus, which can improve modulation speed and optical power by effectively suppressing intensity noise of an incoherent light source. The optical signal transmission apparatus comprises a light source; a reflective gain-clamped semiconductor optical amplifier to generate gain-clamped optical signals having a substantially constant output intensity in a gain saturation region; a wavelength division multiplexing apparatus configured to spectrum-slice light from the light source, provide the spectrum-sliced light to the reflective gain-clamped semiconductor optical amplifier, and multiplex optical signals gain-clamped by the reflective gain-clamped optical amplifier, and a circulator for inputting the light generated by the light source to the wavelength division multiplexing apparatus, and outputting the optical signal multiplexed by the wavelength division multiplexing apparatus to a transmission link.
摘要:
Disclosed are optical signal transmission apparatus including a reflective gain-clamped semiconductor optical amplifier and optical communication system using the optical signal transmission apparatus, which can improve modulation speed and optical power by effectively suppressing intensity noise of an incoherent light source. The optical signal transmission apparatus comprises a light source; a reflective gain-clamped semiconductor optical amplifier to generate gain-clamped optical signals having a substantially constant output intensity in a gain saturation region; a wavelength division multiplexing apparatus configured to spectrum-slice light from the light source, provide the spectrum-sliced light to the reflective gain-clamped semiconductor optical amplifier, and multiplex optical signals gain-clamped by the reflective gain-clamped optical amplifier. and a circulator for inputting the light generated by the light source to the wavelength division multiplexing apparatus, and outputting the optical signal multiplexed by the wavelength division multiplexing apparatus to a transmission link.
摘要:
A gain-clamped semiconductor optical amplifier is disclosed. The amplifier includes a gain waveguide for amplifying an optical signal input to the gain waveguide, and a grating layer, in contact with the gain waveguide, having a first grating disposed at a first end portion.
摘要:
A gain-clamped semiconductor optical amplifier is disclosed. The amplifier includes a gain waveguide for amplifying an optical signal input to the gain waveguide, and a grating layer, in contact with the gain waveguide, having a first grating disposed at a first end portion.
摘要:
A reflective semiconductor optical amplifier includes a substrate, a waveguide with a buried heterostructure formed by sequentially laminating a lower cladding, an active layer, and an upper cladding on the substrate, the waveguide including, sequentially, respective straight line, curved and tapered waveguide regions. A current blocking layer surrounds the waveguide to prevent electric current from flowing outside the active layer. Selectively etching portions of the current blocking layer and the substrate around the waveguide forms a trench to reduce parasitic capacitance. Further features include a window region on one end of the tapered waveguide region, an anti-reflection surface on one end of the window region, and a high-reflection surface on one end of the straight line waveguide region.
摘要:
A reflective semiconductor optical amplifier includes a substrate, a waveguide with a buried heterostructure formed by sequentially laminating a lower cladding, an active layer, and an upper cladding on the substrate, the waveguide including, sequentially, respective straight line, curved and tapered waveguide regions. A current blocking layer surrounds the waveguide to prevent electric current from flowing outside the active layer. Selectively etching portions of the current blocking layer and the substrate around the waveguide forms a trench to reduce parasitic capacitance. Further features include a window region on one end of the tapered waveguide region, an anti-reflection surface on one end of the window region, and a high-reflection surface on one end of the straight line waveguide region.
摘要:
Disclosed are a broadband light source and a broadband optical module using the broadband light source. The broadband light source includes a substrate, a plurality of waveguides including active layers for generating light of mutually differing wavelength bands, and formed on the substrate in order to extend from a first end to a second end of the broadband light source, a plurality of trenches located between waveguides in order to electrically and optically insulate the waveguides from each other, and a plurality of electrode devices for operating each of the waveguides.
摘要:
A multi-wavelength light source includes a substrate, a fabry-perot laser laminated on the substrate that is operated by driving current below a predetermined threshold current to generate multi-wavelength light including a plurality of peaks whose wavelengths and spacing are identical to these of WDM channels. A semiconductor optical amplifier (SOA) is laminated on the substrate in an arrangement such that a slant surface of the SOA is opposed to a side surface of the fabry-perot laser, which serves to thereby amplify the multi-wavelength light output from the fabry-perot laser. The semiconductor optical amplifier is driven in a gain saturation state to reduce the relative intensity of noise in the channels of the multi-wavelength light that are simultaneously amplified.
摘要:
A multi-wavelength light source includes a substrate, a fabry-perot laser laminated on the substrate that is operated by driving current below a predetermined threshold current to generate multi-wavelength light including a plurality of peaks whose wavelengths and spacing are identical to these of WDM channels. A semiconductor optical amplifier (SOA) is laminated on the substrate in an arrangement such that a slant surface of the SOA is opposed to a side surface of the fabry-perot laser, which serves to thereby amplify the multi-wavelength light output from the fabry-perot laser. The semiconductor optical amplifier is driven in a gain saturation state to reduce the relative intensity of noise in the channels of the multi-wavelength light that are simultaneously amplified.
摘要:
An optical transmitter including a multi-lambda source to output injection light consisting of a plurality of injection wavelengths in channels, a circulator having a first port, a second port, and a third port, the circulator receiving the injection light at the first port, and outputting the received injection light to the second port, and further receiving signal light at the second port, and outputting the received signal light to the third port, an arrayed waveguide grating having a multiplexing port connected to the second port of the circulator, and a plurality of demultiplexing ports, spectrum-slicing injection light received from the circulator at the multiplexing port into a plurality of injection channels, and outputting the injection channels to the demultiplexing ports and further receiving and multiplexing a plurality of signal channels at the demultiplexing ports, into a signal light, and outputting the signal light to the multiplexing port, and a plurality of reflective semiconductor optical amplifiers connected to the demultiplexing ports of the arrayed waveguide grating, respectively, each of the reflective semiconductor optical amplifiers receiving an associated one of the injection channels, and amplifying the associated injection channel to generate an associated one of the signal channels.