Abstract:
A solid-state imaging device having a high sensitivity and a structure in which a miniaturized pixel is obtained, and a method for manufacturing the solid-state imaging device in which an interface is stable, a spectroscopic characteristic is excellent and which can be manufactured with a high yield ratio are provided. The solid-state imaging device includes at least a silicon layer formed with a photo sensor portion and a wiring layer formed on the front-surface side of the silicon layer, and in which light L is made to enter from the rear-surface side opposite to the front-surface side of the silicon layer and the thickness of the silicon layer 4 is 10 μm or less. Also, the method for manufacturing the solid-state imaging device at least includes the steps of: forming a semiconductor region of a photo sensor portion in a silicon layer of a layered substrate in which a silicon substrate, an intermediate layer and a silicon layer are laminated; bonding a first supporting substrate onto the silicon layer; removing the silicon substrate and the intermediate layer; forming thereafter a wiring portion above the silicon layer; bonding a second supporting substrate onto the wiring portion, and removing the first supporting substrate to make the silicon layer exposed.
Abstract:
A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.
Abstract:
A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.
Abstract:
A solid-state imaging device having a high sensitivity and a structure in which a miniaturized pixel is obtained, and a method for manufacturing the solid-state imaging device in which an interface is stable, a spectroscopic characteristic is excellent and which can be manufactured with a high yield ratio are provided. The solid-state imaging device includes at least a silicon layer formed with a photo sensor portion and a wiring layer formed on the front-surface side of the silicon layer, and in which light L is made to enter from the rear-surface side opposite to the front-surface side of the silicon layer and the thickness of the silicon layer 4 is 10 μm or less. Also, the method for manufacturing the solid-state imaging device at least includes the steps of: forming a semiconductor region of a photo sensor portion in a silicon layer of a layered substrate in which a silicon substrate, an intermediate layer and a silicon layer are laminated; bonding a first supporting substrate onto the silicon layer; removing the silicon substrate and the intermediate layer; forming thereafter a wiring portion above the silicon layer; bonding a second supporting substrate onto the wiring portion, and removing the first supporting substrate to make the silicon layer exposed.
Abstract:
There is a demand of a solid-state imaging device capable of being driven at a high speed and in which the shading of sensitivity and illuminance defect can be prevented from being caused. A solid-state imaging device (20) comprises a light-receiving sensor section disposed on the surface layer portion of a substrate (21) for performing a photoelectric conversion, a charge transfer section for transferring a signal charge read out from the light-receiving sensor section, a transfer electrode (27) (28) made of polysilicon formed on a substrate (21) at its position approximately above the charge transfer section through an insulating film (26), and an interconnection made of polysilicon and interconnected to the transfer electrode (27) (28). At least one of the polysilicon transfer electrode (27)(28) and the interconnection is formed on a polysilicon layer (27a) (28a) by selectively depositing a high-melting point metal having a resistance value lower than that of polysilicon. Also, there is provided a solid-state imaging device in which a fluctuation of a work function of the transfer electrode can be avoided and a manufacturing method thereof. The solid-state imaging device (10) comprises a buffer layer (1) containing a metal silicide layer (16) is formed between he transfer electrodes (3), (4) and a shunt interconnection layer (7) formed of a metal layer.
Abstract:
There is a demand of a solid-state imaging device capable of being driven at a high speed and in which the shading of sensitivity and illuminance defect can be prevented from being caused. A solid-state imaging device (20) includes a light-receiving sensor section disposed on the surface layer portion of a substrate (21) that performs a photoelectric conversion, a charge transfer section that transfers a signal charge read out from the light-receiving sensor section, a transfer electrode (27) (28) made of polysilicon formed on a substrate (21) at a position approximately above the charge transfer section through an insulating film (26), and an interconnection made of polysilicon and interconnected to the transfer electrode (27) (28). At least one of the polysilicon transfer electrode (27)(28) and the interconnection is formed on a polysilicon layer (27a) (28a) by selectively depositing a high-melting point metal having a resistance value lower than that of polysilicon. Also, there is provided a solid-state imaging device in which a fluctuation of a work function of the transfer electrode can be avoided and a manufacturing method thereof. The solid-state imaging device (10) comprises a buffer layer (1) containing a metal silicide layer (16) is formed between the transfer electrodes (3), (4) and a shunt interconnection layer (7) formed of a metal layer.
Abstract:
A solid-state imaging device having a high sensitivity and a structure in which a miniaturized pixel is obtained, and a method for manufacturing the solid-state imaging device in which an interface is stable, a spectroscopic characteristic is excellent and which can be manufactured with a high yield ratio are provided. The solid-state imaging device includes at least a silicon layer formed with a photo sensor portion and a wiring layer formed on the front-surface side of the silicon layer, and in which light L is made to enter from the rear-surface side opposite to the front-surface side of the silicon layer and the thickness of the silicon layer 4 is 10 μm or less. Also, the method for manufacturing the solid-state imaging device at least includes the steps of: forming a semiconductor region of a photo sensor portion in a silicon layer of a layered substrate in which a silicon substrate, an intermediate layer and a silicon layer are laminated; bonding a first supporting substrate onto the silicon layer; removing the silicon substrate and the intermediate layer; forming thereafter a wiring portion above the silicon layer; bonding a second supporting substrate onto the wiring portion, and removing the first supporting substrate to make the silicon layer exposed.
Abstract:
A method for making a solid-state imaging device that can form a first P-type well region deep in a substrate without being affected by the heat applied during an epitaxial growth process is disclosed. The method includes a first step of preparing a substrate composite comprising an first substrate and a second substrate on the first substrate, a second step of implanting impurity ions from the surface of the second substrate at an energy exceeding 3 MeV so as to form a barrier layer, and a third step of forming a photosensor in the second substrate.
Abstract:
A process for producing a solid image pickup device is demanded that can enhance a photoelectric conversion region by forming an overflow barrier layer at a deep position and can prevents generation of radiation due to the use of resist as a mask. Upon producing a solid image pickup device having a vertical overflow drain structure, ion implantation is conducted on an entire of a silicon substrate without using a resist mask, so as to form an overflow barrier layer. It is also possible that a trench is formed in a peripheral part of the silicon substrate to surround a pixel region and to separate the overflow barrier layer into the pixel region and an outer peripheral part, and an impurity diffusion layer having a conductive type different from that of the overflow barrier layer is formed on an inner surface of the trench.
Abstract:
A solid-state imaging element is able to maximize a sensitivity relative to various kinds of light sources having different incident angles. In a solid-state imaging element (20), a maximum inclination angle (max of a curved surface (SL) of an interlayer lens (11) relative to a surface (SS) parallel to a surface of a substrate (2) is set to an angle near a critical angle (&thgr;c) of a total reflection.