Abstract:
System and method embodiments are provided for providing customized virtual networks based on SONAC. In an embodiment, a network management entity for providing a customized VN includes a SONAC module executed by a computing device that is connected to a wireless network, the SONAC module configured to receive service requirement data from the wireless network and create a service customized VN according to the service requirement data, the service requirement data describing one or more service requirements, wherein the SONAC module comprises an interface to interact with: an SDT component, the SDT component used by the SONAC module to determine a service customized logical topology; an SDRA component that maps the logical topology to physical network resources within the wireless network; and a SDP component that determines an end-to-end data transport protocol for communication between a first device and a second device via the wireless network.
Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
A method for configuring a first base station within a cluster in a communications system having a plurality of cluster includes optimizing an operating parameter of the first base station in accordance with first utility function results from a first utility function associated with the first base station and second utility function results from a second utility function associated with a second base station within the cluster, the first utility function results and the second utility function results according to multiple settings for the operating parameter of the first base station, a first initialized setting of the operating parameter for the second base station, and a second initialized setting of the operating parameter for an external base station outside the cluster. The method also includes sharing the optimized operating parameter with the external base station.
Abstract:
Backhaul resource utilization efficiency can be improved by performing lower-layer decoding of uplink transmissions at access points to obtain transport blocks carried by the uplink transmissions, and then strategically scheduling the transport blocks over backhaul links extending between the access points and network nodes. Upon reception, the network nodes may perform radio link control (RLC) decoding of the transport blocks to obtain the uplink data. Transport blocks may be scheduled a manner that prioritizes time-sensitive data (e.g., voice traffic), or in a manner that strategically routes transport blocks over backhaul paths to increase the overall utilization of backhaul resources.
Abstract:
A method for estimating communications channels includes determining, by a first device, channel significance information from a transmitting device, the channel significance information including information about communications channels carrying signals that are potentially significant interferers to the first device operating within range of the transmitting device, and estimating, by the first device, channel parameters of the communications channels identified as potentially significant interferers in accordance with the channel significance information. The method also includes transmitting, by the first device, the estimated channel parameters to one of the transmitting device and a controlling device.
Abstract:
Increased resource utilization efficiency can be improved by modeling path costs during admission and path-selection. Specifically, path costs for candidate paths are modeled based on load characteristics (e.g., current load, load variation, etc.) of links in the candidate paths. Path costs can represent any quantifiable cost or liability associated with transporting a service flow over the corresponding path. For example, path costs can correspond to a probability that at least one link in the path will experience an outage when transporting the service flow, a price charged by a network operator (NTO) for transporting the traffic flow over the candidate path, or a total network cost for transporting the flow over a candidate path. The candidate path having the lowest path cost is selected to transport a service flow.
Abstract:
A method for sending data packets to mobile devices includes generating time-location information for a first mobile device in accordance with mobility information for the first mobile device and other mobility-related information, wherein the time-location information comprises predictions of when coverage areas of a plurality of transceiver devices operatively coupled to the communications device cover the first mobile device, wherein the communication device serves the first mobile device, selecting a first transceiver device from the plurality of transceiver devices in accordance with the time-location information and a first delivery time associated with a first data packet, and sending the first data packet to the first transceiver device in accordance with the first delivery time, wherein the first data packet is configured to prompt the first transceiver device to transmit the first data packet to the first mobile device.
Abstract:
Methods and systems for providing joint power control (PC) and scheduling in a wireless network are provided. In one example, a method includes generating a near-optimal power pattern for PC and scheduling in accordance with long term channel statistics. The near-optimal PC solution may be generated by first generating a set of possible power patterns in accordance with likely scheduling scenarios, then statistically narrowing the set of possible power patterns to identify the most commonly used power patterns, and finally selecting one of the most commonly used power patterns as the near-optimal power pattern. In another example, a table of optimal PC solutions are provided for performing distributed PC and scheduling in an adaptive and/or dynamic manner.
Abstract:
Interference costs on virtual radio interfaces can be modeled as a function of loading in a wireless network to estimate changes in spectral efficiency and/or resource availability that would result from a provisioning decision. In one example, this modeling is achieved through cost functions that are developed from historical and/or simulated resource cost data corresponding to the wireless network. The cost data may include interference data, spectral efficiency data, and/or loading data for various links over a common period of time (e.g., a month, a year, etc.), and may be analyzed and/or consolidated to obtain correlations between interference costs and loading on the various links in the network. As an example, a cost function may specify an interference cost on one virtual link as a function of loading on one or more neighboring virtual links.
Abstract:
A controller having access to channel information associated with a neighboring access point (AP) may communicate a mask to a served user equipment (UE). The mask may specify transmission parameters for an uplink transmission between the served UE and a serving AP such that a successful decoding probability of the uplink transmission at the neighboring AP exceeds a threshold. The mask may specify a maximum MCS level for the uplink transmission, a minimum transmit power level for the uplink transmission, and/or a precoder constraint for the uplink transmission that produces constructive interference at a spatial location of the neighboring AP. This may enable the neighboring AP to isolate the uplink transmission from uplink wireless signals using an interference cancellation technique, e.g., successive interference cancellation (SIC) techniques.