Abstract:
Apparatus, systems, and methods for network utility maximization with multiple radio access technology (multi-RAT) aggregation in communication systems are described.
Abstract:
Apparatus, systems, and methods to identify victims and aggressors of interference in full duplex communication systems are described. In one example, a controller comprises logic to detect a quality of service issue in a wireless communication downlink with a first user equipment in a first cell and in response to detecting the quality of service issue, determine whether the user equipment is a victim of interference from a second user equipment or is a victim of interference from a downlink with a second user equipment in a second cell. Other examples are also disclosed and claimed.
Abstract:
Disclosed are a method, computing device, and a non-transitory computer-readable medium storing computer-executable instructions which, when executed, cause a processor to perform operations, which may include: sending a transmit signal including non-linear elements; receiving another signal comprising at least a portion of the transmit signal through a receive chain of a computing device; simulating the transmit chain; generating, by the simulated transmit chain, a first signal associated with the transmit signal; generating a second signal by frequency shifting the first signal; generating one or more first kernels associated with the second signal; performing decimation of the one or more first kernels; transforming the one or more first kernels using a lower triangular matrix, into one or more second kernels; combining the one or more second kernels to generate an echo cancellation signal; and subtracting the echo cancellation signal from the received at least a portion of the transmit signal.
Abstract:
A method of processing signals may include identifying a plurality of critical elements of a parameter vector based on one or more predefined criteria, wherein the parameter vector represents a relationship between the input signal vector and the output signal vector; identifying a reduced parameter update vector having a plurality of elements, wherein the elements are selected according to a criterion related to the relationship between the input signal vector and the output signal vector; updating the plurality of critical elements of the parameter vector using the reduced parameter update vector to generate an updated parameter vector, wherein the reduced parameter update vector has less elements than the parameter vector; and processing one or more signals associated with the input signal vector using the updated parameter vector.
Abstract:
An adaptation hardware accelerator comprises a calculation unit configured to receive a plurality of inputs at one or more predefined time intervals, wherein each time interval corresponds to a calculation iteration, the plurality of inputs being associated with a plurality of adaptive filters each having a plurality of taps, and determine a correlation data and a cross-correlation data based thereon for a given calculation iteration. The correlation data comprises a correlation matrix comprising a plurality of sub-matrices, wherein determining the correlation matrix comprises determining only the submatrices in an upper triangular portion and a diagonal portion of the correlation matrix. Further, the adaptation hardware accelerator comprises an adaptation core unit configured to determine a plurality of adaptive weights associated with the plurality of adaptive filters, respectively, based on an optimized RLS based adaptive algorithm, by utilizing the correlation data and the cross correlation data. In addition, the hardware accelerator unit comprises a convergence detector unit configured to determine a convergence parameter; and a controller configured to generate an iteration signal for each of the predefined time intervals based on the convergence parameter. The iteration signal communicates to the calculation unit and the adaptation core unit to continue with a next calculation iteration or to conclude, wherein the conclusion indicates a determination of a final value of the plurality of the adaptive weights by the adaptation core unit.
Abstract:
A method of processing signals may include calculating a covariance matrix and a correlation vector based on an input signal vector and an output signal vector; identifying a plurality of critical elements of a parameter vector based on a predefined criteria, wherein the parameter vector describes a relationship between the input signal vector and the output signal vector; calculating a solution to a linear system to generate a reduced parameter update vector having a plurality of elements, wherein the linear system is based on the plurality of critical elements of the parameter vector, the covariance matrix, and the correlation vector; updating the plurality of critical elements of the parameter vector using the reduced parameter update vector to generate an updated parameter vector, wherein the reduced parameter update vector has less elements than the parameter vector; and processing one or more signals associated with the input signal vector using the updated parameter vector.
Abstract:
In a multiple Radio Access Technology (multi-RAT) heterogeneous wireless network, a user equipment (UE) is capable of communicating via multiple types technologies, such as both WiFi and Long Term Evolution (LTE) cellular. The evolved node B that the UE communicates with may be a small network, encompassing distances of 200 meters or less. A method communicating in such a network may involve using an on-time throughput scheduling algorithm that maximizes the throughput by handing off certain users and prioritizing communications based on specific criteria. These criteria may include prioritizing communications of users closest to a target threshold. The UE may communicate with the network to negotiate which radio access technology is to be used, a range of acceptable data rates.