Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating in a data path group. For example, an apparatus may include logic and circuitry configured to cause a Neighbor Awareness Networking (NAN) device to communicate during one or more Discovery Windows (DW) of a NAN cluster; and to communicate with one or more NAN devices of at least one data path group having a data path topology according to a scheduling scheme corresponding to the data path topology, the data path group including two or more NAN devices of the NAN cluster.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating in a Neighbor Awareness Networking (NAN) cluster. For example, an apparatus may include logic and circuitry configured to cause a NAN device to determine a scheduling rank of the NAN device; to receive schedule information from one or more other NAN devices of a NAN cluster including the NAN device, the schedule information of an other NAN device indicating one or more communication resources for communication with the other NAN device; based on a comparison between the scheduling rank of the NAN device and one or more scheduling ranks of the one or more other NAN devices, to determine a schedule to communicate with the one or more other NAN devices; and to communicate with the one or more other NAN devices based on the schedule.
Abstract:
The disclosure relates to a method and apparatus for leveraging Bluetooth (BT) or Bluetooth low energy (BLE) technologies to conserve energy in multi-mode devices. In one embodiment, the disclosure relates to synchronizing a first wireless platform with a second wireless platform by exchanging Wi-Fi synchronization information through BT packets. Each of the first and the second wireless platforms may have integrated Wi-Fi (or other communication modalities) with a BT radio. In one embodiment of the disclosure, the Wi-Fi communication modes are kept at sleep mode while the BT modalities exchange synchronization information.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating in a data path group. For example, an apparatus may include logic and circuitry configured to cause a Neighbor Awareness Networking (NAN) device to communicate during one or more Discovery Windows (DW) of a NAN cluster; and to communicate with one or more NAN devices of at least one data path group having a data path topology according to a scheduling scheme corresponding to the data path topology, the data path group including two or more NAN devices of the NAN cluster.
Abstract:
This disclosure describes systems, methods, and devices related to service set compression. A device may determine a wake-up frame comprising one or more fields, wherein the one or more fields indicate an action to be taken on a receiving device. The device may determine an identifier to be indicated in the wake-up frame. The device may determine a size of the identifier. The device may cause to compress the identifier forming a compressed output, wherein the identifier is compressed by applying a cyclic redundancy code (CRC) computation. The device may identify a portion of the compressed output. The device may cause to send the wake-up frame to a receiving device, wherein the wake-up frame comprises the portion of the compressed output based on the size of the identifier.
Abstract:
This disclosure describes systems, methods, and devices related to intra-basic service set (BSS) signaling for multiple access points (APs). A device may determine one or more access points (APs), wherein the one or more APs are in a set of multiple basic service sets (BSSs) identified as intra-BSS. The device may include, in a first frame, a high-efficiency operation element comprising a bit associated with an indicator of the set of multiple BSSs. The device may include, in a second frame, an association identification (AID) value, wherein the AID value is associated with the device. The device may cause to send the first frame a first station device of one or more station devices. The device may cause to send the second frame to a second station device of the one or more station devices.
Abstract:
This disclosure describes systems, methods, and devices related to multi-band dual connectivity. A device may establish a first connection with a first access point on a first band. The device may establish a second connection with a second access point on a second band. The device may determine a multi-band maximum idle period. The device may cause to send a presence indication to at least one of the first access point or the second access point within the multi-band maximum idle period.
Abstract:
This disclosure describes systems, methods, and devices related to a bidirectional location measurement report (LMR) feedback. A responding device may determine a first location measurement report (LMR) feedback type of an initiating device. The responding device may determine a second LMR feedback type of the responding device. The responding device may determine a common availability window, defined by a common start time and a common end time, for an exchange of a first LMR and a second LMR, wherein the common availability window is based on the first LMR feedback type and on the second LMR feedback type. The responding device may cause to send the first LMR to the initiating device during the common availability window. The responding device may identify the second LMR received from the initiating device during the common availability window.
Abstract:
Logic may implement protocols and procedures to suspend a wake-up radio mode. Logic may enter a wake-up radio (WUR) mode suspend with a WUR request indicative of the WUR mode suspend. Logic may enter the WUR mode suspend from a WUR mode with a one-way handshake and may exit from the WUR mode to the WUR mode suspend. Logic may negotiate WUR mode parameters without entering the WUR mode. Logic may default to a WUR mode or a WUR mode suspend in response to receipt of a wake-up packet. Logic may receive the WUR request frame with a WUR mode suspend field to request entry into a WUR mode suspend. Furthermore, logic may maintain negotiated WUR mode parameters during the WUR mode suspend.
Abstract:
Methods, computer readable media, and wireless apparatuses are disclosed for setting network allocation vectors (NAV) for multi-user (MU) operation. An apparatus of a wireless device is disclosed. The apparatus comprising processing circuitry configured to: decode a preamble portion of a frame, and if the preamble portion of the frame comprises a high-efficiency (HE) signal (SIG) A field (HE-SIG-A) comprising a transmission opportunity (TXOP) duration field and a media access control (MAC) portion of the frame is not decoded, set one or more NAVs based on the TXOP duration field. The processing circuitry may be further configured to: decode a MAC portion of the frame, and if the MAC portion of the frame comprises a MAC duration field, set the one or more NAVs based on the MAC duration field.