Abstract:
Methods, systems, and apparatus, including an optical receiver including an optical source, including a substrate; a laser provided on the substrate, the laser having first and second sides and outputting first light from the first side and second light from the second side, the first light output from the first side of the laser has a first power and the second light output from the second side has a second power; and a first modulator that receives the first light and a second modulator that receives the second light, such that the power of the first light at an input of the first modulator is substantially equal to the power of the second light at an input of the second modulator.
Abstract:
Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides
Abstract:
Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor receiving a plurality of independent data streams, and supplying a plurality of digital subcarrier outputs, based on the plurality of independent data streams, and configurable to vary the frequency spacing between two or more of the plurality of digital subcarrier outputs; the transmitter configured to output a modulated optical signal including a plurality of optical subcarriers based on the digital subcarrier outputs wherein based on first ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality subcarriers by a first gap, and based on second ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality of subcarriers by a second gap different than the first.
Abstract:
Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.
Abstract:
Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides
Abstract:
Methods, systems, and devices for implementing optical interface and multiplexing devices. An input optical signal is received over an input fiber by an optical interface device. A modulated optical signal and an unmodulated optical signal are demultiplexed from the input optical signal, the unmodulated optical signal is modulated based on a data signal to generate an output optical signal; and the output optical signal is transmitted over an output fiber. A modulated optical signal is received over a network connection from an optical network by an optical multiplexing device. An unmodulated optical signal is generated using a generator device; the unmodulated optical signal and a signal that includes the modulated optical signal are multiplexed using an optical multiplexer to generate an output signal; and the output signal is transmitted over an output fiber to the optical interface device.
Abstract:
An optical transmitter may include one or more lasers configured to provide a primary optical signal having a primary wavelength and a secondary optical signal having a secondary wavelength to a modulator via corresponding first and second modulator inputs. The modulator may combine the primary and secondary optical signals into a combined optical signal and modulate, with an electrical signal, the combined optical signal to provide a modulated optical signal to an optical filter. The optical filter may be configured to separate, from the modulated optical signal, a modulated primary optical signal having the primary wavelength and a modulated secondary optical signal having the secondary wavelength and provide the modulated primary optical signal to a primary optical link and the modulated secondary optical signal to a secondary optical link.